01 youtube官網中文版更新失敗請檢查數據正確(youtube視頻數據分析維度不包括什么)

时间:2024-02-25 06:40:30 编辑: 来源:

youtube觀看數據暫時凍結

1、技術問題:YouTube遇到了技術故障或服務器問題,導致觀看數據無法更新或顯示。

2、數據審核:YouTube正在對觀看數據進行審核,以確保數據的準確性和合規性。這涉及到檢測和刪除無效的觀看或人工干預的觀看。

3、安全問題:YouTube發現了異常的觀看行為,例如機器人或刷點擊量的行為,為了保護平臺的安全性,暫時凍結了觀看數據。

4、維護和更新:YouTube正在進行系統維護或更新,這需要暫時凍結觀看數據以確保數據的完整性和一致性。

youtube視頻數據分析維度不包括什么

發布時間。

查詢資料可知,youtube視頻數據分析維度是收入、觀看時間、互動。不包括發布時間。

YouTube后臺給我們提供了強大的數據分析工具,通過advancedmode的自定義模式我們可以篩選數據,在分析YouTube視頻數據時,你需要清楚自己的目標是什么。

Hive實戰之Youtube數據集

本次實戰的數據來自于"YouTube視頻統計與社交網絡"的數據集,是西蒙弗雷澤大學計算機學院在2008年所爬取的數據

數據集地址

數據之間采用"\t"作為分隔符

具體數據如下:

數據量大小為1G,條數為500萬+

使用環境為

hive-1.1.0-cdh5.4.5

hadoop-2.6.0-cdh5.4.5

演示形式為使用hive shell

我們一起來看看數據

主要的問題在于category和relatedIDs處理,由于Hive是支持array格式的,所以我們想到的是使用array來存儲category和relatedIDs,但是我們發現category的分割符是"&"而realatedIDs的分隔符是"\t",我們在創建表格的時候能夠指定array的分隔符,但是只能指定一個,所以再將數據導入到Hive表格之前我們需要對數據進行一定轉換和清洗

并且數據中肯定會存在一些不完整數據和一些奇怪的格式,所以數據的清洗是必要的,我在這里所使用的數據清洗方式是使用Spark進行清洗,也可以使用自定義UDF函數來進行清洗

數據清洗注意點

1)我們可以看到每行數據以"\t"作為分隔符,每行有十列數據,最后一列關聯ID可以為空,那么我們對數據進行split之后數組的大小要大于8

2)數據中存在 "uNiKXDA8eyQ KRQE 1035 News & Politics 107" 這樣格式的數據,所以在處理category時需要注意 News & Politics中間的 &

處理后的數據如下:

下面的實戰都是基于數據清洗后的數據進行的

1)youtube1的創建,文件格式為textfile

create table youtube1(買粉絲Id string, uploader string, age int, category array<string>, length int, views int, rate float, ratings int, 買粉絲ments int,relatedId array<string>)

row format delimited

fields terminated by "\t"

買粉絲llection items terminated by "&"

stored as textfile;

2)youtube2的創建,文件格式為orc

create table youtube2(買粉絲Id string, uploader string, age int, category array<string>, length int, views int, rate float, ratings int, 買粉絲ments int,relatedId array<string>)

row format delimited

fields terminated by "\t"

買粉絲llection items terminated by "&"

stored as orc;

3)youtube3的創建,文件格式為orc,進行桶分區

create table youtube3(買粉絲Id string, uploader string, age int, category array<string>, length int, views int, rate float, ratings int, 買粉絲ments int,relatedId array<string>)

clustered by (uploader) into 8 buckets

row format delimited

fields terminated by "\t"

買粉絲llection items terminated by "&"

stored as orc;

數據導入:

1)load data inpath "path" into table youtube1;

2)由于無法將textfile格式的數據導入到orc格式的表格,所以數據需要從youtube1導入到youtube2和youtube3:

insert into table youtube2 select * from youtube1;

insert into table youtube3 select * from youtube1;

1)user_tmp的創建,文件格式textfile,24buckets

create table user_tmp(uploader string,買粉絲s int,friends int)

clustered by (uploader) into 24 buckets

row format delimited

fields terminated by "\t"

stored as textfile;

2)user的創建,文件格式orc,24buckets

create table user(uploader string,買粉絲s int,friends int)

clustered by (uploader) into 24 buckets

row format delimited

fields terminated by "\t"

stored as orc;

user表的數據導入也是同理

數據導入:

1)load data inpath "path" into table user_tmp;

2)由于無法將textfile格式的數據導入到orc格式的表格,所以數據需要從user_tmp導入到user:

insert into table user select * from user_tmp;

1)統計出觀看數最多的10個視頻

2)統計出視頻類別熱度的前10個類型

3)統計出視頻觀看數最高的50個視頻的所屬類別

4)統計出觀看數最多的前N個視頻所關聯的視頻的所屬類別排行

5)篩選出每個類別中熱度最高的前10個視頻

6)篩選出每個類別中評分最高的前10個視頻

7)找出用戶中上傳視頻最多的10個用戶的所有視頻

8)篩選出每個類別中觀看數Top10

select * from youtube3 order by views desc limit 10;

結果如下:

select tagId, 買粉絲unt(a.買粉絲id) as sum from (select 買粉絲id,tagId from youtube3 lateral view explode(category) catetory as tagId) a group by a.tagId order by sum desc limit 10;

結果:

select tagId, 買粉絲unt(a.買粉絲id) as sum from (select 買粉絲id,tagId from (select * from youtube3 order by views desc limit 20) e lateral view explode(category) catetory as tagId) a group by a.tagId order by sum desc;

結果:

思路:

結果:

思路:

結果如下:

select * from youtube_category where categoryId="Music" order by ratings desc limit 10;

結果如下:

思路:

結果如下:

youtube直播結束后數據怎么查

1、登錄YouTube賬號。

2、點擊右上角“profilei買粉絲n(頭像標志)”,選擇“YouTubeStudio”。

3、在右側面板中能看到指標總結,查看詳細分析可點擊“GoToChannelAnalytics”或在左側菜單欄中選擇“Analytics”。

4、根據需要可在“Overview”、“Reach”、“Engagement”、“Audience”及“Revenue”(如果適用的話)這幾個指標中轉換。在本文下一個部分,會有各項指標的詳細介紹。

5、詳盡的數據分析及各個視頻的數據指標情況。

搜索关键词: