液壓系統中常用的油管有根據什么選擇(液壓油的成分是什么)

时间:2024-05-27 12:20:36 编辑: 来源:

在液壓系統中常用的油管有

液壓膠管大多數都是按壓力,通徑,鋼絲層數和接頭類型分類,進油管和回油管多是低壓油管,一般為1層16Mpa以下!出油管為高壓油管,根據系統壓力選擇。硬管都是金屬材料,一般為Q235,45和不銹鋼的(1Cr18Ni9Ti)等,還有一種是從油箱到泵的吸油管,一般用鋼絲纏繞的樹脂軟管!按照材料分類:硬管總成和軟管總成按照應用分類:硬管總成可以分為:吸油管 回油管 壓力管路膠管總成:吸油管 回油管 壓力管路 樹脂管:一般作為先導管來用液壓油管接頭: 

1、液壓油管:分:橡膠型(鋼絲編織、鋼絲纏繞)、金屬軟管、低壓用PU管等等

2、接頭:焊接式、卡套式、擴口式等等

常用的液壓油管有哪些種類

常用液壓油管按承受壓力分有高壓油管、低壓油管、超高壓油管;

按特性分:有耐高溫油管、耐酸堿油管、耐油油管;

按照使用場所分:挖掘機油管、食品級油管等;

按照口徑大小分:有大口徑油管等。

液壓油的成分是什么

液壓油的成分是植物基礎油和合成醋。

液壓油就是利用液體壓力能的液壓系統使用的液壓介質,在液壓系統中起著能量傳遞、抗磨、系統潤滑、防腐、防銹、冷卻等作用。

對于液壓油來說,首先應滿足液壓裝置在工作溫度下與啟動溫度下對液體粘度的要求,由于潤滑油的粘度變化直接與液壓動作、傳遞效率和傳遞精度有關,還要求油的粘溫性能和剪切安定性應滿足不同用途所提出的各種需求。

液壓油的種類繁多,分類方法各異,長期以來,習慣以用途進行分類,也有根據油品類型、化學組分或可燃性分類的。這些分類方法只反映了油品的掙注,但缺乏系統性,也難以了解油品間的相互關系和發展。

擴展資料:

液壓系統中控制閥起什么作用?通常分為幾大類?

液壓系統中的執行元件(如液壓缸、液壓油馬達)在工作時,需要經常地啟動、制動、換向和調節運動速度及適應外負載的變化,因此就要有一套對機構進行控制和調節的液壓元件,通常用控制閥來完成。它對外不做功,僅用于控制執行元件,使其滿足主機工作性能要求。

1、控制閥按其功能分類

(1)方向控制閥,這類閥,如單向閥和換向閥等,用于控制油流方向,以實現執行元件的啟動、停止、前進和后退。

(2)壓力控制閥,這類閥,如溢流閥、減壓閥和順序閥等,用于控制液壓系統中的壓力,以滿足執行元件所需要的力、轉矩或工作程序的控制。

(3)流量控制閥,這類閥,如節流閥和調速閥等,用于控制液壓系統中的油液流量的大小,以實現執行元件所需要的運動速度。

2、控制閥按其連接方式分類

(1)管式連接,管式閥采用螺紋連接,它直接串聯在系統的管路上,不需要專用的連接板。

(2)板式連接,板式閥需要專用的連接板,將閥用螺釘裝在連接板上,管子與連接板相連,板的前面安裝閥,板的后面接油管。

(3)法蘭連接,流量大于300L/min時,用法蘭連接。在管子端部焊接法蘭盤,用螺釘與閥體連接。

(4)集成塊式,集成塊是一塊通用化的六面體,四周的一面裝有與執行元件相連的管接頭,其余三面安裝閥類元件。集成塊的內孔道與各閥相通,組成不同的基本回路。集成塊上下面為塊與塊之間的連接面,幾個集成塊用長螺栓疊裝起來,既形成了整個液壓系統。

它的特點是:結構緊湊、油管少、便于裝卸與維修。

(5)疊加閥式,疊加閥是標準化的液壓元件,通過螺栓將閥體疊接在一起,疊加閥互相直接連接即可組成液壓系統。每個疊加閥即起控制閥的作用,又起通道體的作用。

它的特點是:結構緊湊、油管少、體積小、重量輕、不需要管道連接、壓力損失小、節省了大量的油管和管接頭。

(6)插裝式,這類閥無單獨的閥體,由閥芯、閥套等組成的插裝元件插裝在插裝塊體的預制孔中,插裝塊體起到閥體和管路作用,通過塊內通道將幾個插將元件組成在一起,即可成回路。

它的特點是:非常適合用大流量的場合。

3、控制閥按其操縱方式分類

通用有手動、腳踏、機動、氣動、電動和液動等方式,有時是幾種方式組合的形式。

4、按工作壓力分類

按控制閥在液壓系統的工作壓力分為:低壓閥、中壓閥和高壓閥。

5、按控制原理分類

通常有開關閥、比例閥、伺服閥和數字閥。開關閥調定后只能在調定狀態下工作。比例閥和伺服閥能根據輸入信號連接地或按比例地控制系統的參數。數字閥側用數字信號直接控制閥的動作。

液壓系統中的過濾器有哪些類型?各起什么作用?

"液壓系統中的過濾器有油液過濾器和空氣過濾器兩類。油液用能被過濾器用于濾去油液中的雜質,維護油液清潔,保證液壓系統正常工作;空氣過濾器,主要用于過濾進入開式油箱的空氣,使空氣清潔。

7-3何謂油液過濾器的過濾精度?油液過濾器分為哪些種類?

<1> 過濾精度是過濾器的一項重要性能指標,通常用能被過濾掉的雜質顆粒的公稱尺寸來度量。

<2>按過濾精度不同,油液過濾器有粗過濾器、普通過濾器、清過濾器和特精過濾器四種,它們分別能濾去公稱尺寸為100μm以上、10-100μm、5-10μm和5μm以下的雜質顆粒,油液的過濾精度要求與液壓系統類型及其工作壓力有關,一般來講,液壓控制系統比液壓傳動系統的過濾清度要求高,高壓系統比低壓系統的過濾清度要求高。

按過濾芯形式不同,液壓系統中常用的油液過濾器有網式、線隙式、紙芯式、燒結式和磁式等類型。"

什么是氣舉采油?

氣舉采油技術已有一百多年的歷史。國外主要產油國,氣舉采油占人工舉升采油的15%,氣舉采油的產液量占機采總量的30%,為第二大人工舉升方式。我國中原、塔里木、吐哈、大慶、遼河、四川、南海東部等油氣田相繼采用了氣舉采油方法,已初步形成一定的氣舉采油生產規模。氣舉采油設計正在向計算機自動化發展,工藝逐步配套,效率不斷提高。

氣舉采油(Gas Lift)是從地面將高壓氣體注入油井中,降低油管內氣、液混合物的密度,從而降低井底流壓的一種機械采油方法。利用氣體的膨脹能舉升井筒中液體,使停噴、間噴或自噴能力差的油井恢復生產或增強生產能力。

氣舉井與自噴井有許多相似之處,其井筒流動規律基本相同。自噴井依靠油層本身的能量生產,而氣舉井的主要能量來自于高壓氣體。油管下到油層中部,沉沒度最大,可獲得最高的油管工作效率。即使將來油層壓力下降,也能保持較好的氣舉油效果。

氣舉采油的優點很多,如排液量范圍大、舉升深度大、井下無機械磨損件、操作管理方便等。對含砂、結蠟、結垢以及含腐蝕性介質的油井優勢明顯。也可用于油井誘噴、排液、氣井排水采氣及小井眼的采油等。特別適用于有高壓氣源可供利用的油井。深井、高氣油比一和復雜結構油井的生產費用明顯低于其他人工舉升方式。

氣舉方式分為連續氣舉和間歇氣舉。可根據產液量或產液指數、井底壓力、舉升高度、氣液比等做出選擇。

一、氣舉系統多數氣舉系統設計成氣體可重復循環的流程。從油中分離出來的低壓天然氣經壓縮機增壓,重新注入油井以舉升液體。少數井可以直接利用高壓氣井的氣源。

圖6-11所示的循環系統適于連續氣舉。為保證間歇氣舉的瞬時注氣,可增加儲氣罐,僅利用管線的貯氣能力難以操作和調節。氣舉系統一般由壓氣站、地面配氣站、單井生產系統和地面生產系統構成。在此只討論單井生產系統,地面生產系統與其他舉升方式基本相同。

圖6-11氣舉系統示意圖

1.壓氣站壓氣站主要包括進氣處理裝置和壓縮機組,后者是核心。常用天然氣作為氣舉的工作介質,有時也用氮氣或燃燒過的空氣。工作介質的質量會直接影響壓縮機的效率和壽命。壓氣站多選用往復式壓縮機。

2.配氣站配氣站的作用是按一定的壓力和流量,給各氣舉井分配高壓氣體。連續氣舉可在配氣站按需分配氣量,也可用井口節流裝置的孔徑來控制單井的注氣量;對于間歇氣舉,必須增加精心設計的配注開關系統。在配氣站或井口一般采用雙筆記錄儀,連續記錄各氣舉井的油壓、套壓變化,以便及時了解單井工況。

3.氣舉采油井氣舉采油井有兩條通道,一條是油、套管環形空間,壓縮氣體的進入通道;另一條是油管,油氣混合物的產出通道。兩條通道的作用可以互換。油、套管環形空間和油管構成U型管。到達井口的高壓氣體的壓力是氣舉井生產的地面注氣壓力。在井口可以安裝氣嘴,以便將來氣壓力降到井口所需的注氣壓力。

4.氣舉管柱結構常用的單管氣舉管柱結構有開式、半閉式和閉式三種。

1)開式管柱油管管柱不帶封隔器,氣體能從油管底部進入油管,如圖6-12(a)所示。地面注氣壓力波動會引起環空液面升降。每次關井后,必須重新卸載。一般不宜采用此種管柱結構。

圖 6-12氣舉井管柱結構

2)半閉式管柱單封隔器完井,能阻止注入氣體從油管底部進入油管。油井一旦卸載,流體就無法回到油、套環形空間(環空)。這種結構既適用于連續氣舉也適用于間歇氣舉,如圖6-12(b)所示。

3)閉式管柱單封隔器及固定閥完井。以半閉式裝置為基礎,在油管柱末端加裝單流閥。避免了開式結構的種種弊端,使高壓氣體和井筒液體不能進入地層,如圖6-12(c)所示。

二、連續氣舉連續氣舉(Continuous Gas Lift)是最常用的氣舉采油方式。可以看作是自噴井生產的一種變型。在氣舉過程中,高壓氣體連續地從油、套環形空間注入,通過裝在油管上的氣舉閥進入油管,并與油井產出的流體混合,降低混合液的密度,從而降低井底流壓,將井筒流體連續舉升到地面,同時地層連續、穩定地生產。連續氣舉也可以采用油管注氣,環空產出混氣液的方式。氣舉設備(Gas Lift Equipment)主要包括壓縮機、配氣管匯、注入管柱、氣舉閥及相關的計量控制設備等。

連續氣舉的顯著特點是:能夠充分利用注入氣和地層產出氣的膨脹能量;注氣量和產液量相對穩定;排液量大。對于2000m深的油井,連續氣舉的經濟產量一般大于30m3/d。

三、啟動壓力和工作壓力油井停產后,井筒積液不斷增加。油管和套管內的液面最終會上升到一定位置并穩定下來,這時的液面叫靜液面(Static Liquid Level)。油井穩定生產時的環空液面叫動液面(Procing Fluid Level)。

當壓縮機向油、套環形空間注入高壓氣體時,環空液面將被擠壓下降。根據U形管原理,環空中的液體將被擠入油管,使油管內液面上升。不斷提高壓縮機壓力,環空液面最終會降到油管鞋處,此時對應的井口注入壓力稱為啟動壓力。啟動壓力是使環空液面下降到油管鞋處,壓縮機需提供的最大壓力。高壓氣體進入油管后,混氣液密度降低,液面不斷升高直至噴出地面。不斷注入高壓氣體,井底流壓會持續降低。當其低于油層壓力時,油層中的流體會流到井中,致使油管內的混氣液密度有所增加,壓縮機的注入壓力也隨之增加。經過一段時間后趨于穩定,最后達到一個協調、穩定的工作狀態。油井達到穩定氣舉生產所對應的壓縮機壓力稱為工作壓力。

在上述過程中,壓縮機的壓力變化如圖6-13所示。pe為啟動壓力,是氣舉過程中最大的井口注入壓力。po為氣舉生產趨于穩定時的井口注入壓力,即工作壓力。啟動壓力與油管下入深度、直徑以及靜液面位置有關。在中、深油井中,如果油管下入較深,地面壓縮機將需要很高的輸出壓力才能將氣體經油管鞋注入油管,使油井投入正常生產。當靜液面深度一定時,降低油管下入深度可降低啟動壓力。但是,當降到一定程度時,油井將無法正常生產。氣舉井的啟動壓力有兩個極端值。

圖6-13壓縮機壓力變化曲線

(1)靜液面很高,靠近井口。環形空間的液面還沒有被擠到油管鞋,油管內的液面已溢出井口。此時,啟動壓力最大,就等于整個油管長度上的液柱壓力:

最大啟動壓力,Pa;L——油管長度,m;ρL——液體密度,kg/m3;g——重力加速度,m/s2。

(2)當油層的滲透性較好,而且被擠壓的液面下降很緩慢時,從環形空間擠出的液體部分被油層吸收。在極端情況下,液體全部被油層吸收。當高壓氣到達油管鞋時,油管中的液面幾乎沒有升高。這種情況下,啟動壓力最低,由油管的沉沒深度確定,即:

式中p″e——最小啟動壓力,Pa;h′——沉沒度,m。

沉沒度是油管沉沒在動液面以下的深度,即油管鞋到動液面的距離。

e和p″e之間。

由圖6-13可以看出,啟動壓力pe明顯高于工作壓力po。如果壓縮機的額定輸出壓力小于啟動壓力,就無法把環空中的液體壓入油管,氣體不能進入油管就無法實現氣舉。要想實現氣舉,需大功率的壓縮機來保證氣舉的啟動。但正常生產時又不需要這么大的功率,勢必造成壓縮機功率的浪費,并增加了投入成本。為了在低成本下實現氣舉,必須降低啟動壓力,有效的方法是安裝氣舉閥(Gas Lift Valve)。

四、氣舉卸載過程氣舉井的啟動過程實際上是降低井內流體載荷的過程。因此,也稱為卸載過程。

理論上講,氣舉深度可以從井口到井底。然而,高壓氣井或壓縮機組提供的注氣壓力有限,使氣舉深度受到限制。為此,必須用卸載閥逐級卸載,降低液面和氣舉的啟動壓力,降低井底流壓,增加地層的產出量。卸載是大多數氣舉井生產的前提。無論是連續氣舉,還是間歇氣舉,卸載都是必經的工藝過程。在各類氣舉裝置中,氣舉閥都是多只串聯下入井中,自上而下工作,保證舉升井在最短時間內完成逐段卸載。油管鞋以上20m處可預先設置一個底閥作備用,以適應地層壓力下降引起的舉升深度增加。

氣舉管柱下井時,所有氣舉閥處于打開狀態。注入環空的高壓氣體將環空流體通過所有的氣舉閥壓入油管;隨后,高壓氣通過露出的第一個氣舉閥進入油管,進行卸載;第二個氣舉閥露出后,第一個氣舉閥關閉,注入氣從第二個氣舉閥進入油管繼續卸載;第三個氣舉閥露出后,第二個氣舉閥也關閉,注入氣經第三個氣舉閥進入油管,卸載繼續進行。高壓氣體持續下壓環空液面,直至排液能力達到設計的生產能力,卸載成功。此時進氣的氣舉閥就是正常氣舉生產的工作閥。底閥暫不露出液面。

五、氣舉閥原始的氣舉工藝只是按照計算深度在油管上開一些小孔。注入的高壓氣體通過小孔進入油管,降低油管內的混合液密度,排出其上油管中的液體。當油管內的壓力下降到設定值時,需要關閉該孔,以便于高壓氣體集中進入第二個孔。氣舉閥應運而生,它就是可以根據需要能夠關閉的智能閥孔。其作用就是使高壓氣體中途進入油管,排出該氣舉閥之上的液體,從而降低啟動壓力。氣舉閥關系到氣舉井能否正常生產。氣舉閥的發明、充氣波紋管氣舉閥的問世,給氣舉工藝帶來了革命性的飛躍。

1.氣舉閥的作用氣舉閥的作用主要有以下幾點:

(1)在油管柱上形成可開關的注氣通道。

(2)降低啟動壓力,用較小的壓縮機把井內液面降至注氣點處,啟動氣舉,并以正常生產所需的注氣壓力按預期的產量進行開采。

(3)靈活改變注氣深度,以適應地層供液能力的變化;(4)改變舉升深度,增大油井生產壓差,清潔油層,解除污染。

(5)間歇氣舉的氣舉閥可以防止過高的注氣壓力對下一個注氣周期產生影響。控制每個周期的注氣量。

(6)單流氣舉閥可以阻止井液從油管向環空倒流。

2.氣舉閥的結構最常用的是充氣波紋管氣舉閥,它由充氣波紋管、閥桿、閥球和閥孔等構成。在波紋管內預先充入氮氣構成加載單元,起到類似于彈簧的加載作用。如圖6-14所示,由于波紋管的承壓面積Ab大于閥孔的截面積Av作用于Ab上的壓力就是氣舉閥的控制壓力。因此,(a)圖所示為氣壓(即奎壓)控制氣舉閥;(b)圖為液壓(即油壓)控制氣舉閥。因充氣壓力隨環境溫度而變化,氣舉閥下井前要以井溫為準調試波紋管腔室的充氮壓力。

圖6-14充氣波紋管氣舉閥六、間歇氣舉間歇氣舉(Intermittent Gas Lift)是指將高壓氣體間歇地注入井內,使井內的液體周期性地噴出井口的采油方式。間歇氣舉能建立更低的井底流壓,但需要的瞬時注氣量更大。對于低壓地層、中低產量階段,間歇氣舉在經濟成本和靈活性方面,優于其他人工舉升方式。

間歇氣舉有常規間歇氣舉、柱塞氣舉、腔室氣舉、球塞氣舉等多種形式,前兩種最為常用。間歇氣舉僅適用于油管氣舉,普遍選用半閉式或閉式氣舉裝置。間歇氣舉大多使用液壓控制氣舉閥,要求工作閥具有大孔徑注氣通道,并且能迅速打開,以便有效地將液體段塞頂替到地面上來。同時,最大限度地降低注入氣的竄流量和液體的回落量。

1.常規間歇氣舉常規間歇氣舉是連續氣舉的一種變型,將連續注氣改為間歇注氣。因此,連續氣舉的卸載、設計等都可用于常規間歇氣舉。當連續氣舉不能順利實施卸載時,可以用常規間歇氣舉提高瞬時注氣量,卸載后再用連續氣舉方式進行生產。在氣舉開采中后期,為了節省氣源或增加排液深度,也常常把連續氣舉改為常規間歇氣舉。常規間歇氣舉可以作為強化排液的手段。

從地面上調節注氣壓力,只有當工作閥之上聚積了足夠高度的液柱時,工作閥才能被打開,使氣體進入油管而舉升液體。一個注氣周期可分為四個階段。

1)液體在油管中上升在這個階段,來自供氣管線的氣體經地面控制器進入環空,再通過工作閥進入油管內,推動液體段塞向上運動。同時,流體繼續從地層流入井底。上升過程中,由于注入氣的滑脫竄入及充氣尾端回落,液體段塞的長度逐漸減小。當液體段塞頂部到達地面時,這個階段結束。

2)液柱產出液體不斷上升,部分液柱從井口產出。加上氣體的竄入和液體回落,油管中液體段塞的長度急劇縮短,流速變得很大。當氣體前沿到達井口時,這個階段結束。只有在最短的時間內把整個液體段塞舉升到地面,才可獲得良好的經濟效果,因此工作閥必須是快速打開型的,使氣體能夠高速通過工作閥的整個截面。前兩個生產階段,液體的速度不應降低。

3)夾帶液的產出當氣泡突破液體到達地面時,該階段開始。液體段塞的產出減小了液柱壓力和系統阻力,導致氣體流速迅速增加。高速氣流的沖刷使液膜破碎成液滴,大量液滴伴隨氣流被帶出井口。這個階段持續到油管內的氣體停止流動。

4)液柱再生未產出的液滴、管壁上的液膜回落到油管底部與油層產出的液體匯合。再次把氣體注入環形空間,壓力達到預定值時,打開快速開啟型工作閥,開始下一個新的循環周期。

在間歇氣舉的四個階段中,只要井底流動壓差存在,地層流體就不斷流向井底。

2.柱塞氣舉通過對常規間歇氣舉的管流特征及工況分析發現,氣體竄流和液體回落對氣舉效率的影響極大。柱塞氣舉就是在油管中增加一個活動柱塞,形成氣、液間的固體界面,阻止或減少液體回落和氣體竄流。柱塞氣舉能夠降低氣體注入量,增加每周期的產液量,提高舉升效率。而且,柱塞周而復始的往復運動還能防止結蠟、結垢。柱塞氣舉是常規間歇氣舉的一種變型。

柱塞是柱塞氣舉的心臟部件,其結構和材料對舉升效果影響極大。柱塞有許多類型,不同柱塞的液體回落量不盡相同。理想的柱塞應包括以下三方面的特性:

(1)柱塞要有良好的耐磨性、抗震性和在油管內的防卡性;(2)在上行過程中,柱塞與油管間要有良好的密封性能;(3)在下落過程中,柱塞能迅速通過氣體或液體下降,下降阻力小。

不同的井能量不同,同一口井在不同時期能量也不一樣。根據地層能量大小可將柱塞氣舉分為普通柱塞氣舉和注氣柱塞氣舉。當地層氣液比達到最佳時,井剛好能在最佳條件下運行。當地層氣液比大于最低氣液比時,利用地層能量就能進行柱塞氣舉,即普通柱塞氣舉。普通柱塞氣舉是自噴的延伸,每個循環周期分為三個階段:柱塞上行,柱塞下落和壓力恢復。

當地層氣液比小于最低氣液比時,僅僅依靠地層的能量是不能實現柱塞氣舉的。需要補充注氣的柱塞氣舉稱為注氣柱塞氣舉。根據其運行條件和柱塞的動態特征,每個循環劃分為四個不同的階段:柱塞上行、液體段塞產出、氣體放噴和段塞再生(氣體壓力恢復),與常規間歇氣舉的各階段一一對應。

搜索关键词: