輸油管道壓降計算公式(輸油管道存在多個翻越點,怎么計算總壓降)

时间:2024-05-19 04:39:13 编辑: 来源:

輸油管道存在多個翻越點,怎么計算總壓降

1

管道壓降計算

一 概述

管道壓降為管道摩擦壓降、靜壓降以及速度壓降之和。

管道摩擦壓降包括直管、管件和閥門等的壓降,同時也包括孔板、突然擴大、突然縮小以及接管口等產生的局部壓降;靜壓降是由于管道始端和終端標高差而產生的;速度壓降是指管道始端和終端流體流速不等而產生的壓降。

對復雜管路分段計算的原則,通常是在支管和總管(或管徑變化處)連接處拆開,管件(如異徑三通)應劃分在總管上,按總管直徑選取當量長度。總管長度按最遠一臺設備計算。

對因結垢而實際管徑減小的管道,應按實際管徑計算。

管壁粗糙度的選用應考慮到流體對管壁的腐蝕、磨蝕、結垢以及使用情況等因素。如無縫鋼管,當流體是石油氣、飽和蒸汽以及壓縮干空氣等腐蝕性小的流體時,可選取絕對粗糙度ε=0.2mm;輸送水時,若為冷凝液(有空氣)則取ε=0.5mm;純水取ε=0.2mm;未處理水取ε=0.3~0.5mm;對酸、堿等腐蝕性較大的流體,則可取ε=1mm或更大些。

對工程設計中常見的牛頓流體的單相流、汽液兩相流管道壓降可利用aspen plus的相關模型或者楊總編的excel壓降計算程序來計算,二者差別不大。非牛頓流體的流動阻力以及氣力輸送和漿液流管道的壓降計算參見有關專題。 二 基本信息和物性模型的選擇

為利用Aspen plus計算管道壓降,首先必須在確定組分的條件下,選擇合適的物性計算模型。

Aspen 模擬流程的一般計算步驟如下:

1 啟動Aspen用戶界面程序,快捷方式名稱Aspen plus user interface,對應可執行程序為apwn.exe。

該快捷方式通常位置:程序-->Aspentech-->Aspen Engineering suit-->Aspen plus 10.2--> Aspen plus user interface。可用右鍵單擊,將其復制到桌面上來。

在啟動窗口Aspen plus startup選擇Template選項,單擊ok,在隨后出現的窗口中的Simulations標簽下根據應用類別選擇一合適的模板,比如Chemicals

2

with Metric Units,適用于化學品制造工業,計算中采用公制單位。Run type選擇默認的flowsheet。

2 點擊Data菜單中的setup選項或者工具欄中的setup按鈕,出現數據瀏覽器窗口。在setup組的specifications選項中給出模擬的標題或者保持默認的空白。

點擊紅色買粉絲ponents組中的紅色specifications選項,從數據庫中選擇適當組分。

點擊properties組,根據應用類型在process type里選擇合適選項,如Chemical,然后在Base method里選擇合適的物性模型。通常Base method里的物性模型都適用于該類型的應用,如要選擇最準確的模型,選擇方法參見幫助主題的properties-->Chapter 2 property Method Description-->Classification of P琺筏粹禾誄鼓達態憚卡roperty Methods and Re買粉絲mended Use或者參考手冊User guide的第7章。然后點擊binary interaction 組中對應物性模型的二元交互參數選項。 三 模擬流程和管道模型的建立

1 計算管道壓降的模型有兩種,其一為pipe,其二為pipeline。Pipe模型用于模擬單一入口和出口的物料流股。流動型式為一維、穩態、完全發展的流動(無進口效應)。可進行一、二、三相計算,流動方向和標高可任意變化,管件阻力也可計算。Pipeline用于計算多段不同管徑和標高的管道,不包括管件阻力的計算。

在模型庫pressure changer里面選擇pipe模型,放入流程窗口,然后用物料流股連接出口和入口,完成流程構造。

2 輸入模型和流股數據

在Setup PipeParameters表單里輸入管長、管徑、粗糙度和角度或者上升下降距離。 管徑選擇參見《工藝系統工程設計技術規定》之6――管徑選擇(P141)或者《化工工藝設計手冊》p38,根據管道內常用流速范圍選定合適流速,求出對應管徑,并根據管徑系列做圓整。或者先給一管徑初值,待壓降計算出之后,根據壓降要求及流速做相應修正。

在Setup ThermalSpecification表單里選擇溫度變化模式,默認為等溫。 在Setup fittings表單中指定閥門、三通、彎頭的數目及其他管件的當量系數。 當量系數可參考《工藝系統工程設計技術規定》之7――管道壓力降計算中

3

表1.2.4-2及1.2.4-3。

指定入口流股的壓力、溫度、流量和組成等數據。

四 運行結果檢驗和管徑調整

運行aspen plus求得相應結果。

按照壓降要求,如果管道發生阻塞,可加大管徑或者提高入口壓力。 依據《工藝系統工程設計技術規定》之7――管道壓力降計算,對摩擦壓力降計算結果取1.15倍系數來確定系統的摩擦壓降,但對靜壓力降和其他壓力降不乘系數。

系統總壓降為管道、調節閥、流量計孔板等壓降之和。調節閥的允許壓降通常占系統總壓降的25%~60%,如果系統總壓降超過允許值或調節閥壓降所占比例不合適,則需調整管徑。

管徑調整參見《工藝系統工程設計技術規定》之6――管徑選擇(P141)或者《化工工藝設計手冊》p38,根據管道內常用流速范圍或者一般壓降控制值來修正管徑。對湍流區,通常壓降與管徑的4次方成正比。估算管徑之后,根據管徑系列進行圓整,再次運行aspen plus,求得相應結果。 五 其他壓降計算

1 調節閥

采用Valve模型,給定閥參數可進行調節閥的核算。 2 孔板

根據aspen計算得到流體的定壓熱容和定容熱容以及壓縮系數,根據流體的定壓熱容和定容熱容求得絕熱指數k,然后利用《工藝系統工程設計技術規定》之15――管路限流孔板的設置提供的方法進行計算。

油氣管道輸送是什么?

油氣管道輸送是伴隨著石油工業的發展而產生的。早在1865年10月,美國修建了世界上的第一條輸油管道。該管道直徑為50mm,長約10km。1886年美國又建成了世界上第一條長距離輸氣管道。該管道從賓夕法尼亞州的凱恩到紐約州的布法羅,全長140km,管徑為200mm。

我國于1958年建設了第一條從新疆克拉瑪依油田到獨山子煉油廠的原油輸送管道。該管道全長147km,管徑150mm。1963年又建設了第一條天然氣輸送管道。該管道從重慶巴縣的九龍坡至巴南區,全長84.14km,管徑400mm,簡稱巴渝線。1976年,我國建成了格拉成品油輸送管道。該管道起于青海省的格爾木,止于西藏的拉薩,位于世界屋脊的青藏高原,是海拔最高的成品油管道,管道全長1080km,管徑150mm。此后,隨著大慶、勝利、華北、中原、四川等油氣田的開發,興建了貫穿東北、華北、華東地區的原油管道網,川渝天然氣環網,忠武、陜京、澀寧蘭等天然氣管道以及西氣東輸天然氣管道系統等。到2013年,我國已建成的油氣管道總長度已超過10×104km,初步形成了橫跨東西、縱貫南北、覆蓋全國、連通海外的油氣管網格局。

一、油氣輸送管道構成

油氣輸送管道的類型很多,分類方法不一。如按長度和經營方式分可將油氣輸送管道分為油田內部的管道和長距離油氣輸送管道。按被輸送介質的類型不同,可將油氣輸送管道分為原油輸送管道、成品油輸送管道、天然氣輸送管道、油氣混輸管道等。按管道所處的位置不同,可將油氣輸送管道分為陸上輸送管道和海底輸送管道等。下面主要介紹長距離輸油管道和長距離輸氣管道的構成。

1.長距離輸油管道的構成

長距離輸油管道由輸油站、線路以及輔助配套設施等部分構成,如圖7-21所示。

圖7-21長距離輸油管道的構成

1—井場;2—轉油站;3—來自井場的輸油管;4—首站主要設施;5—調度中心;6—清管器發放區;7—首站鍋爐房等輔助設施;8—微波通信塔;9—線路閥室;10—宿舍;11—中間站;12、13、14—穿越鐵路、河流工程;15—末站;16—煉廠;17—裝卸棧橋;18—裝卸港口

輸油站的主要功能就是給油品加壓、加熱。按所處的位置不同,輸油站可分為首站、中間站和末站。管道起點的輸油站稱為首站,其任務是接收油田集輸聯合站、煉油廠生產車間或港口油輪等處的來油,經計量、加壓、加熱(對于加熱輸送管道)后輸入下一站。首站一般具有較多的儲油設備,加壓、加熱設備和完善的計量設施。

油品在沿管道的輸送過程中,由于摩擦、散熱、地形變化等原因,其壓力和溫度都會不斷下降。當壓力和溫度降到一定程度時,為了使油品繼續向前輸送,就必須設置中間輸油站,給油品增壓、升溫。單獨增壓的輸油站稱為中間泵站;單獨升溫的輸油站稱為中間加熱站;既增壓又升溫的輸油站稱為熱泵站。根據功能的不同,中間站通常設有加壓、加熱設施,一定的儲油設施,清管器收發設施等。中間站應設有越站流程。

末站是位于管道終點的輸油站(庫),其作用是接收管道來油,儲存油品或向用戶轉運。末站一般設有較多的儲油設備,較準確的計量設施、轉輸油設施和清管器收發設施。

長距離輸油管道的線路部分包括管道本身,沿線閥室,通過河流、山谷等障礙物的穿(跨)越構筑物等。輔助設施包括通信、監控、陰極保護、清管器收發及沿線工作人員生活設施等。

2.長距離輸氣管道的構成

長距離輸氣管道的構成與長距離輸油管道類似,也包括首站、中間站、末站、干線管道以及輔助設施等部分,如圖7-22所示。

輸氣管道首站的主要功能是接收天然氣處理廠的來氣,進行分離(干燥、除塵)、調壓和計量后送入輸氣干線。與輸油不同的是,由于采氣井的壓力都比較高,且天然氣采出、處理、輸送的各環節都是密閉的,為了充分利用氣井壓力,通常情況下,長距離輸氣管道的首站大多不設增壓設備,可依靠氣井余壓輸至下一站,如陜京線的第一個增壓站就設在離管線起點100km處。

圖7-22長距離輸氣管道的構成

根據功能不同,輸氣管道的中間站可分為接收站、分輸站和壓氣站等。接收站的功能是接收沿線支線或氣源的來氣;分輸站的功能是向沿線的支線或用戶供氣;壓氣站的功能是給氣體增壓。

輸氣管道末站的功能是接收管道來氣、分離、調壓、計量后送入用戶配氣站。若末站直接向城市輸配氣管網供氣,末站也可稱為城市門站。在有條件的地區,末站應建設地下儲氣庫,以調節供氣的不平衡。

二、輸油管道的特性及運行控制

(一)輸油管道的特性

1.水力特性

油品在管道中流動的過程中,其壓能逐漸降低,常稱為壓降。壓降主要包括沿程壓降(習慣上稱為管道摩阻)、局部壓降和位差壓降。

(1)沿程壓降:主要是油品流過直管段時,由于油品與管壁、油品與油品之間的摩擦所消耗的壓能。可通過達西公式計算求得:

式中hL——管道的沿程阻力損失,m;

λ——沿程摩擦阻力系數,無量綱,與流體的流態相關;

g——重力加速度,m/s2;

v——油品的運動速度,m/s;

d——管道的內直徑,m;

L——管道的計算長度,m。

(2)局部壓降:是指油品流過各種管件或閥件時所消耗的壓能。長距離輸油管道的壓能損失以沿程阻力損失為主,局部阻力損失比較小,一般不單獨計算,而是根據管道沿線的地形起伏情況不同,取干線長度的1%~2%作為沿線的局部摩擦阻力損失的附加長度,合并在管道沿程摩擦阻力損失的計算長度中一并計算。通常,在地形比較平坦的地段,取局部壓降的附加長度為沿程壓降計算長度的1%;在地形起伏比較大的地段取2%;其他地段可在1%~2%之間取值。

(3)位差壓降:是指管道沿線地形變化引起的被輸送油品在管道中動水壓力的升高或降低。一定管段內的位差壓降只與該管段的終點與起點的海拔高度有關,與管段的中間地形變化無關。管段的位差壓降等于計算段終點與起點的海拔高度之差。

油品在管道輸送的過程中,所消耗的壓能是由泵機組提供的。為此,管道沿線應設置一定的輸油泵站,以滿足油流流動所消耗的壓能。布置泵站時,通常是先根據管道的工作參數,在管道縱斷面圖上畫水力坡降線,初步確定泵站的可能布置位置,再綜合考慮管道走向的人文、地質、環境、交通、生活等情況對站址進行適當調整。

2.熱力特性

輸送“三高”油品的常用方法是加熱輸送,其目的是提高油品溫度,避免油流在管道中凝固;減少油品中石蠟、膠質等的析出及在管壁的凝結;降低油品黏度,減小管道壓降。

油流在管道內流動過程中的溫降與輸量、環境溫度、散熱條件、油溫等諸多因素有關,加熱輸油管道中油流溫度沿線的變化規律可用舒霍夫溫降公式計算,即:

式中G——管道的質量輸量,kg/s;

K——油流通過管壁向管道鋪設處周圍環境的傳熱系數,W/(m2·℃);

l——溫度計算點離加熱站出口的距離,m;

t0——管道周圍介質的溫度,℃;

tc——加熱站的出站油溫,℃;

tl——距出站l處的油溫,℃。

C——平均輸送溫度下油品的比熱容,J/(kg·℃),

D——管道的計算直徑(對于無保溫的管道,取鋼管的直徑;對于有保溫層的管道,取保溫層內外直徑的平均值),m。

實際上,加熱輸油管道的熱能和壓能的供求是相互聯系、相互影響的。增加熱能的供應,輸送溫度升高,油品黏度降低,管道摩擦阻力減少。增加壓能供應,一方面輸量增加,溫降變慢;另一方面,在較高的壓力下,可以輸送溫度較低的流體。在這相互聯系和影響的兩種能量中,熱能是起主導作用的。因此對加熱輸油管應綜合考慮其熱力特性和水力特性,按熱力特性計算全線所需的加熱站數,按水力特性確定全線所需的泵站數,然后在管道的縱斷面圖上進行加熱站、泵站布置并進行校核和調整。

(二)輸油管道的運行控制

1.運行參數的調節與控制

在輸油管道的運行過程中,由于受到諸多因素的影響,其運行工況將發生一定程度的變化。因此在管道的實際運行過程中,有時需要對參數進行調節和控制。

調節一般以輸送量作為對象,控制一般以泵站的進出站壓力作為對象。

輸送量調節的方法很多,常用的有改變泵的轉速、車削泵葉輪、拆卸多級離心泵葉輪級數、大小泵匹配、進出口節流等。

壓力調節的目的是保證管道運行過程中的穩定性,其調節的對象是輸油站的進出站壓力。壓力調節的常用措施是改變輸油泵機組的轉速、節流和回流。

2.輸油管道中的水擊及其控制

輸油管道系統正常運行過程中,其流態是穩定的。但在實際生產過程中,需要進行泵的啟停、閥門的啟閉、流程的切換等操作。這些操作都將會使管道中流體的流速發生突變,從而引起管內壓力的突變,這種現象稱為水擊。

水擊危害主要體現在兩個方面:一是超壓危害,可能使管道系統的壓力超過管道的承壓能力造成管道的破壞;二是減壓損壞,可能使管道系統的壓力低于正常工作壓力,致使管道失穩變形。當然,水擊產生的壓力波也可能會向上游或下游傳播,對上游或下游的泵站特性產生一定影響。因此,應采取有效措施對水擊危害加以控制,常用的方法主要有泄壓保護、調節閥自動調節、泵機組自動停運等保護措施。

泄壓保護是在管道可能出現超壓的位置,安裝專用的泄壓閥門,在出現水擊超壓時,打開泄壓閥門從管道中泄放一定數量的液體,從而使管道內壓力下降,避免水擊危害。

調節閥自動調節保護是根據管道運行壓力的變化自動對閥門的開啟度進行調節,以滿足保護管道系統的要求。調節閥自動調節保護大都與其他保護措施配合使用。

泵機組自動停運就是在泵站的吸入壓力過低、出站壓力過高時,通過自動控制系統停運一臺或多臺輸油泵,以降低泵站的能量輸出,減小泵站的輸送量,使出站壓力下降,進站壓力升高。這種方法主要用于串聯泵機組泵站的保護。

三、油品的順序輸送

油品順序輸送是指在一條管道內,按照一定的批量和次序,連續地輸送不同種類的油品。由于經常性變換輸油品種,所以在兩種油品交替時,在接觸界面處將產生一段混油。混油產生的因素主要有兩個:一是由于在管道橫截面上,液流沿徑向流速分布不均勻,使后邊的油品呈楔形進入前面的油品中;二是由于管道內液體的紊流擴散作用。

(一)混油的檢測

為了指導順序輸送管道的運行管理,需要對兩種油品交替過程中的混油情況進行檢測。目前常用的混油濃度檢測方法有密度法、超聲波法、記號法等。

密度法是利用混合油品的密度與各組分油品的密度、濃度之間存在線性疊加關系的原理進行檢測的。此法是在管道沿線安裝能自動連續測量油品密度的檢測儀表,通過連續檢測混油密度的變化,檢測混油濃度的變化。

超聲波法是根據聲波在不同密度油品中的傳播速度不同的特性而進行檢測的。在常溫條件下,油品的密度越大,聲波在油品中的傳播速度就越快。混油濃度的超聲波法就是根據這一原理,在管道沿線安裝超聲波檢測儀表,通過連續測量聲波通過管道的時間,確定管內油流的密度,從而檢測混油的濃度。

記號法檢測是先將熒光材料、化學惰性氣體等具有標識功能的物質溶解在與輸送油品性質相近的有機溶劑中,制成標識溶液。使用時,在管道起點兩種油品的初始接觸區加入少量的標識溶液,該標識溶液隨油流一起流動,并沿軸向擴散,在管道沿線檢測油流中標識物質的濃度分布,即可確定混油段和混油界面。

(二)減少混油量的措施

在油品的順序輸送中,我們總是希望盡量減少混油量,控制混油量的措施有很多,首先我們可以采用先進、合理的技術工藝措施來減少混油量(例如簡化流程,加大交替油品的輸量,采用密閉輸送流程等);其次是采取一些專門的措施來減少混油量,如機械隔離法和液體隔離法等。

機械隔離法是將一定的機械設施投放于兩種油品中間,將兩種油品隔離,以減少油品的混合。常用的隔離設施有橡膠隔離球和皮碗形隔離器等。

液體隔離法是在兩種交替的油品之間注入隔離液,以減小混油量。常用作隔離液的物質有:與兩種油品性質接近的第三種油品、兩種油品的混合油、水或油的凝膠體、其他化合物的凝膠體等,其中凝膠體隔離液具有較好的應用特性。

(三)混油的處理方法

處理混油的方法主要有兩種:一是在保證油品質量標準要求的前提下,分批將混油摻入純凈油中銷售或降級使用。如在順序輸送汽油和柴油時,可把汽油濃度高的混油段接收在汽油混油儲罐中,柴油濃度高的混油段接收在柴油混油儲罐中,將兩種混油分別小批量地摻入汽油和柴油的純凈油中銷售。這種方法適用于混油程度較輕且終點兩種油品的銷售量都較大的情況。二是將混油就近輸至煉油廠加工處理。這種方法適用于混油程度較重,或終點混合油品的純凈油銷售量較小的情況。

四、輸氣管道及城市燃氣輸配

天然氣管道是陸上輸送大量天然氣唯一的手段。海上運輸天然氣的方法之一是將天然氣先降到-160℃成為液化天然氣,然后裝船運輸,運到目的地以后加溫又由液態轉為氣態,恢復天然氣的性能。海上另一種天然氣輸送方法仍然是敷設海下輸氣管道。大西洋中的北海油田所產的天然氣就是用1000km的海下管道輸到英國和歐洲大陸的。

天然氣的主要成分是甲烷、乙烷、丙烷、丁烷和其他烴類,還有少量硫化氫、二氧化碳和水蒸氣,有時氣井中還帶有冷凝液和水等液體。在進入管道前必須在處理場除去硫化氫和二氧化碳等。

天然氣管道有以下幾個特點:一是輸氣管道是個自始至終連續密閉帶壓的輸送系統,不像輸油系統有時油品進入常壓油罐;二是天然氣管道更直接為用戶服務,直接供給家庭或工廠;三是天然氣密度小,靜壓頭影響小于油品管道,設計時高差小于200m靜壓頭可忽略不計,輸氣管道幾乎不受坡度影響;四是天然氣是可壓縮的,因此不存在突然停輸產生的水擊問題;五是天然氣管道比輸油管道更要重視安全;六是天然氣管道與城市煤氣管道不同,天然氣來自氣井起輸的壓力比城市煤氣高,天然氣管道進入城市總站以后要減壓到城市管網壓力才能向城市供氣。

一個完整的城市配氣系統主要由以下幾部分組成:

(1)配氣站。配氣站是城市配氣系統的起點和總樞紐,其任務是接受干線輸氣管的來氣,然后對其進行必要的除塵、加臭等處理,根據用戶的需求,經計量、調壓后輸入配氣管網,供用戶使用。

(2)儲氣站。儲氣站的任務是儲存天然氣,用來平衡城市用氣的不均衡。其站內的主要設備是各種不同種類的儲氣罐。實際中,配氣站和儲氣站通常合并建設,合稱儲配站。

(3)調壓站。調壓站設于城市配氣管網系統中的不同壓力級制的管道之間,或設于某些專門的用戶之間,有地上式和地下式之分。站內的主要設備是調壓器,其任務是按照用戶的要求,對管網中的天然氣進行調壓,以滿足用戶的需求。

(4)配氣管網。配氣管網是輸送和分配天然氣到用戶的管道系統。根據形狀可分為樹枝狀配氣管網和環狀配氣管網。前者適用于小型城市或企業內部供氣,其特點是每個用氣點的氣體只可能來自一個方向;環狀配氣管網可由多個方向供氣,局部故障時,不會造成全部供氣中斷,可靠性高,但投資較大。

 高凝高黏原油輸送技術

由于中國近海油田產出的原油多具有高凝固點、高黏度以及高含蠟特性,因此在渤海灣、北部灣和珠江口海域已開發的海上油田所鋪設的海底輸油管道,全部采用熱油輸送工藝和保溫管道結構。

海底高凝、高黏原油管道輸送技術,是我國從海底管道工程起步階段就注意研究和引進的。從20世紀80年代初期渤海的埕北、渤中28-1、到渤中34-2/4油田和南海北部灣潿10-3油田開發配套的海底輸油管道工程,都涉及如何解決好原油輸送技術的問題。我們結合油田原油特性,與日本和法國石油工程界合作,研究采用了安全可靠的工程對策,學習引進了相關設計、施工和運行管理技術。隨后在渤海灣和北部灣自營開發的諸多油田開發工程中,設計、鋪設了眾多海底輸油管道,形成了我國一套完整的海底高凝、高黏原油管道輸送技術。通過大量工程實踐應用和檢驗,證明該技術是實用和可靠的。

一、輸送工藝

針對高凝、高黏原油的管道輸送,國內外在油田及外輸管道工程上使用了各種減阻、降黏方法,諸如加化學藥劑、乳化降黏、水懸浮輸送以及黏彈性液膜等,進行過大量研究和試驗,但由于技術上、經濟上的種種原因,均未得到廣泛應用。目前,最實用、最可靠的方法仍是采用加熱降黏防止凝固的輸送工藝。

對高凝原油,為防止原油在管道輸送過程中凝固,依靠加熱使管道中的原油溫度始終維持在凝固點以上。

對高黏原油,采用加熱降低黏度,滿足管道壓降需求和節約泵送能耗。當然,在采用熱油輸送工藝的同時,一般都相應采用保溫管道結構。

(一)工藝模擬計算分析

海上油田開發工程涉及到的海底輸油管道,其輸送工藝模擬計算,一般要根據油田地質開發提供的逐年產量預測(并考慮一定設計系數),計算不同情況(管徑、輸量、入口溫度等)下的壓降、溫降以及管道內液體滯留量和一些必要的工藝參數。依此選擇最佳管徑,確定出不同情況下的工藝參數(不同生產年的輸送壓力、溫度等)。

近年來,原油管道輸送工藝模擬計算分析普遍采用計算機模擬程序進行。中國海油從加拿大NEOTEC公司引進了PIPEFLOW軟件,該軟件與流行的PIPESIM、PIPEPHASE等商業軟件類同,匯編了各種計算方法及一些修正系數、參考數據庫,供設計分析者選用。

(二)保溫材料的選擇和厚度確定

對采用熱油輸送工藝的海底管道,熱力計算是非常重要的環節,而其中管道傳熱系數K值又是管道熱力條件的綜合表現。K值除受管道結構影響外,埋地的地溫條件、保溫材導熱系數和保溫材厚度是三大影響因素。

從計算分析結果看,由于地溫變化不大對K值影響不明顯,只是在低輸量時,要注意其對終溫的影響。

保溫材性質和保溫層厚度是影響K值最關鍵的因素,也是影響管道終溫的關鍵因素。目前國內選用的保溫材料與國外最常用的一樣,是采用聚氨酯泡沫塑料。這是一種有機聚合物泡沫,能形成開孔或閉孔蜂窩狀結構,優點是導熱系數小(≤0.03W/m2·h.℃)、密度低(40~100kg/m3)和吸水率小(≤3%),且化學穩定性好,同時工業生產成熟,價格相對便宜。從保溫效果考慮,當然是保溫層厚度越大越好,但是,當保溫層厚度達到一定值時,保溫效果的增加和厚度的增量不再呈線性增加的關系,而是增加十分平緩。特別是對海底管道,保溫層厚度增加意味著外管直徑增加,就長距離管道而言,外管增加一級管徑,鋼管用量和施工費增加都是十分可觀的。因此,根據計算分析和優化設計,認為選用保溫層厚度為50mm是合理的。

(三)停輸和再啟動計算分析

停輸和再啟動計算分析是高凝、高黏原油海底管道工藝設計的重要內容,將直接關系到管輸作業的安全和可靠。

停輸后的溫降分析,視為最終確定管道安全時間。對于采用熱油輸送工藝的管道停輸后,隨著存油熱量散失,原油將從管壁向管中心凝固,凝層的加厚及凝結時釋放的潛熱將延緩全斷面凝固的過程。存油凝固時間取決于管道保溫條件、油品熱容、停輸時的溫度和斷面直徑。通常這些數值越大,全斷面凝固時間就越長。一般凝油層厚度在管道軸向是一個變化值,通常以管道終斷面凝油厚度作為安全停輸時間的控制值。

對于加熱輸送的高凝、高黏原油管道發生停輸,且預計在安全停輸時間內時,不能恢復管道輸油,為保證管道安全,最有效的措施是在管內存油開始凝固時,用水或低凝油將其置換。

停輸后的再啟動分析,是考慮管道發生停輸后可能出現的最不利工況和環境條件,此時要恢復通油,需計算所需的再啟動壓力和提出實現再啟動要采取的措施以及增設必要的設備和設施。

通常,再啟動壓力(P),用下式計算:

中國海洋石油高新技術與實踐

式中:P為再啟動壓力(Pa);P。為管道出口壓力(Pa);Di為管道內徑(m);τ為原油在停輸環境溫度下的屈服應力(Pa);L為管道可能凝固的長度(m)。

(四)水化物和沖蝕的防止措施

海上油田開發工程涉及的輸油管道,是一種與陸上原油長輸管道和海上原油轉輸管道不同的管道,它是從井口平臺產出的原油氣水混輸至中心處理平臺或浮式生產貯油裝置的油田內部集輸管道。該類海底管道輸送時伴有從井口采出的水和氣,屬于混輸管道,對這類油管道,也是采用加熱輸送工藝和保溫管道結構。

做這類混輸油管道的工藝設計,除做凈化原油輸送管道通常要進行的模擬計算分析外,還要增加段塞流分析和防止水化物和沖蝕產生的分析。

段塞流現象是油氣混輸過程中的一個重要問題。正常輸送過程中,如何判定是否出現嚴重的段塞流,以及如何確定段塞流長度,目前已經有了通用的分析計算判斷方法。在清管作業過程中,由于管道內存在一定的滯留液量,因此在清管器前將形成液體段塞流。在下游分離設備設計中必須考慮清管作業引起的段塞流影響,一般是設計一定的緩沖容量,使容器操作始終維持在正常液位與高液位報警線之間,確保生產正常。

水化物是影響海底混輸管道操作的一大隱患,特別是在以下三種工況下可能出現水化物,為此提出了防止形成水化物的措施:①低輸量狀況,為防止水化物生成,要求在輸送過程中,管道內油氣溫度始終維持在水化物生成溫度以上。但在低輸量狀況下,溫降很快,根據水化物生成曲線判斷,可能會生成水化物。此時應及時注入甲醇之類的防凍液(水化物抑制劑),以防止水化物生成;②停輸過程,在長期停輸狀態下,由于管道內油氣溫度降到了環境溫度,且管內壓力仍保持較高壓力狀態,所以可能生成水化物。此時,應采取的措施,一是給管道卸壓,二是往管道內注入水化物抑制劑;③重新啟動,通常停輸后再啟動,需要高于正常操作壓力的啟動壓力,而這時溫度又往往很低,故很容易生成水化物。此時應采取連續注入水化物抑制劑的做法,直到管道內溫度達到正常操作溫度為止。

防止產生沖蝕是油氣混輸管道工藝設計不容忽視的問題。對多相混輸管道,若流速超過一定值時,液體中含有的固體顆粒會對管道內壁形成一種強烈的沖刷腐蝕,特別是在急轉彎處如海底管道立管及膨脹彎處。因此設計時要計算避免沖蝕的最大流速,其公式為:

中國海洋石油高新技術與實踐

式中:Ve為沖蝕速度(ft

lft=0.3048m。/s);pm為在輸送狀態下,多相混合物的密度(磅

1磅=0.453592kg。/立方英尺

l立方英尺=20831685×10-2m3。);C為經驗系數,連續運行取100,非連續運行取125。

沖蝕速度是混合物密度的函數,混合物密度越大,沖蝕速度越小,混合物密度越小則沖蝕速度越大。為保證在管道內不產生沖蝕現象,應控制管內流體流速一定低于計算出的最低沖蝕速度。

(五)操作管理

對海底高凝、高黏原油管道特別要注意以下操作管理問題。

1.初始啟動

初始投產運營,一般采用以下作業步驟:①用熱水或熱柴油預熱管道,使管道建立起適應投產作業的溫度場;②待測得出口溫度達到設計要求后,按要求開井投產。

2.停輸及再啟動

停輸一般分應急停輸和計劃停輸兩大類,停輸情況不同,再啟動方式也不同。為確保管道停輸后的再啟動,一般在井口平臺上設置高壓再啟動泵。

a.對短期停輸,指管內流體最低溫度在某個設計值(如原油凝固點)以上,可使井口油氣直接進管道或用高壓泵啟動。

b.對長期停輸,在停輸之前,應啟動高壓泵完成管內流體置換作業。如果事先沒有準備,屬于意外突然停輸,一旦停輸時間較長,管道內降至環境溫度,原油析蠟并凝固。此時,要采用啟動高壓泵,用柴油置換出原油,然后按初始啟動步驟進行。

3.清管

在正常生產過程中,應根據生產情況經常進行清管作業,清除管內蠟沉積和滯留液體,以提高輸送效率和減小腐蝕。

4.化學劑注入

在正常輸送過程中,應考慮注入以下化學劑:

防垢劑——防止管內由于原油含水而結垢使輸量減少;

防蠟劑——防止原油中蠟凝結在管內沉積;

防腐劑——可在管內壁形成一層保護膜,使腐蝕液與管內壁隔離,起到保護作用;

防凍劑——甲醇之類,為防止水化物生成。

二、保溫海底管道結構

對采用熱油輸送工藝的海底高凝、高黏原油管道,為使沿程溫降減慢減小,最常見也是最實用的是將輸油鋼管做成保溫結構。我們廣泛應用了海底保溫管道結構,形成了完整的設計和施工技術。

(一)已應用的結構類型及特點

海底鋼管保溫管道結構(在此不涉及可撓性軟管海底管道),可歸結為兩大類型:一是雙層鋼管保溫結構;二是單層鋼管保溫結構。

1.雙層鋼管保溫結構。

或稱復壁管結構,其管體斷面如圖15-3所示。在這一類型中,又存在三種形式。

圖15-3雙鋼管保溫結構

圖15-4帶封隔法蘭的雙層鋼管保溫結構

第一種形式:管體結構如圖15-4所示。單根管節(一般長度為12m或40ft)每端均設較強的封隔法蘭。在內外管之間的環形空間,注入發泡材料,形成封閉止水保溫單元。這個單元內外管靠兩端封隔法蘭連為一體,內管的熱伸縮靠封隔法蘭強行約束,使內外管不發生相對錯動。海上鋪管時,相鄰兩個管節的外管,用兩個半瓦短節相接。這種形式的優點在于萬一管道外管或接口處發生破損,保溫失效就被限制在最小范圍內。缺點是接口焊接工作量大,用鋪管船法鋪管,速度上不去,致使工程費用高。

圖15-5帶特殊接頭的雙層鋼管保溫結構

圖15-6內外管可相對移動的雙鋼管保溫結構

第二種形式:保溫管節兩端內外管采用特殊接頭連接,如圖15-5所示。最早是由殼牌石油公司等提出研究,后來為意大利Snamprogetti公司開發成專利產品,它已在一些海底管道工程中投入使用。顯然,這種形式已經保留了第一種形式的優點,又克服了其不足。在鋪管船上它可以像鋪單層鋼管一樣,多個焊接站進行流水作業,使海上鋪管速度大大增加。這種形式的問題在于接頭是專利產品,費用高。我國南海東部惠州26-1油田的海底輸油管道應用了該專利產品。

第三種形式,如圖156所示。這種形式,內外管可做相對移動。在海上連接時,內管接口焊好后,補上接口保溫材料,然后拉動外管進行對接,無需采用半瓦管。相對來講,可減少海上焊接工作量,提高鋪管速度。中國海油通過與日本的公司合作,引進了這種形式保溫海底管道設計與海上安裝技術,在已經鋪設的諸多海底輸油管道上均采用了這種結構形式。

2.單層鋼管保溫結構。

這類結構與雙層鋼管保溫結構的區別在于外面的護套管不用鋼管。按照外套管材料不同,又可分為以下五種。

第一種,高密度聚乙烯外套(Highdensity polyethylene jacket)。高密度聚乙烯是一種超高分子量聚合物,它是阻止水蒸氣通過的極好材料。這種超高分子量改善了鋼管抗磨、抗沖擊、抗撕裂和整體物理強度力學性質。這種預成型的外套系統,與鋼管外套相比,具有重量輕、無需作防腐蝕保護的特點。暴露在管節兩端的保溫泡沫采用熱縮性聚合物端帽保護,現場接點處也用熱收縮套作止水防腐蝕處理。這種外套系統已被歐美國家的公司在阿拉伯灣、加蓬外海的海底管道工程中應用,最近幾年,應用水深已達43m。

第二種,鎖接螺旋鋼外套(Spirally crimped steel jacket)。這種外套的特點是用鋼量遠低于采用常規鋼管的管道外套。現場接口處不需對焊,暴露在管節端部的泡沫保溫材料仍用熱縮性端帽保護。這種外套系統,在國外已廣為應用,最大應用水深已達55m。

第三種,模制的聚氨酯外套(Molded polyurethane jacket)。這種外套將防腐蝕材料和聚氯乙烯(PVC)泡沫保溫材料結合為一體(圖15-7)。其優點是:①管道能保持較好的柔度,可用卷繞船鋪設。②在海底萬一外套被損傷,暴露在水中的保溫材料很少,不像其他系統會整個管節泡水。③在保證泡沫干燥方面有較高可靠度。

圖15-7模制聚氨酯外套保溫結構

圖15-8橡膠外套保溫結構

第四種,橡膠外套(Rubberjacket)。與模制聚氨酯外套相似(圖15-8)。只是外套是由PVC泡沫與橡膠層組成。大約每層PVC厚5~8mm,橡膠層厚1mm,層數的多少取決于保溫要求,但最外層的PVC泡沫要用較厚的橡膠層來覆蓋保護。

第五種,取消外護套系統。在輸油鋼管的外面施加的保溫材料,既能防水也有良好的保溫性能,同時又能抗較高的靜水壓力和具有抗機械破壞較強的能力。這種結構應該說是真正意義上的單層鋼管保溫結構。

(二)設計和施工關鍵技術

在我國建成的海底鋼管保溫管道絕大多數是雙重鋼管保溫結構。該項保溫結構的設計和施工技術是由中國海油從日本引進的。

1.設計關鍵技術

雙重鋼管保溫結構的海底管道設計,關鍵技術是平管部分結構分析和立管膨脹彎系統的整體分析。

對平管部分的結構分析,應用日本新日鐵公司開發的“DPIPE”計算機分析程序。該分析程序的結構模型如圖15-9所示。

圖15-9平管結構分析模型

A,A′—外管的不動點;B,B′,E,E′一內外管之間的錨固點(隔艙壁);D—內管的不動點;KB,KB´—彈簧常數;Wf—與土壤的摩擦荷載;A-A′—不動部分(外管);Li+Lm,Li′+Lm′—可動部分(外管)

圖中,模擬兩端立管膨脹彎約束的彈簧剛度KB、KB´由其后說明的立管膨脹彎和平管連接整體分析模型求出。

對埋地管道,管土之間的摩擦荷載Wf由下式計算:

中國海洋石油高新技術與實踐

式中:W=r'hDo;μ是摩擦系數;Do為管道外徑;ws為管道水下單位重量;r´為土壤水下容重;h為埋深。

對立管膨脹彎系統的整體分析,采用日本新日鐵公司開發的大型三維管道結構分析程序“PIDES”軟件。

圖15-10給出按該軟件建立三維結構分析模型的一個工程實例圖。

圖15-10立管膨脹彎系統結構分析模型實例示意圖

圖15-11工況組合分析實例示意圖

對所建立的系統結構分析模型,要按規范要求和工程實際情況進行充分和必要的多種荷載工況組合分析,一般要考慮的荷載有功能荷載(壓力、溫度、質量等)、環境荷載(風、浪、流、冰等)、特殊荷載(如地震)以及立管依附的平臺位移和平管膨脹伸長施加的荷載。

圖15-11給出了一個立管膨脹系統工況組合分析的實例,荷載作用方向是要考慮的重要因素。

2.施工關鍵技術

從日本引進的雙重鋼管保溫結構的海底管道陸上預制和海上安裝技術,主要特點是:預制時單根管節(12m長)保溫材固定在內管上,保溫材與外管內壁間有一定量空氣層,允許內外鋼管相互移動,只是在一定長度上(比如2km或1km)才設置剛性錨點法蘭形成環形空間的水密隔艙。這樣,在海上鋪管法安裝時,管節連接將能如前圖15-6所示,內管焊接合格再補上接口防腐涂裝和相應保溫材后,采用拉移外管對口焊接的做法,會明顯減少外管接口焊接工作量,提高海上鋪管速度。

(三)在渤海蓬萊(PL)19-3油田I期海底管道工程中的應用

雙重鋼管保溫結構的海底管道,通過我國諸多工程實踐的檢驗表明是安全可靠的,但也存在用鋼量大、海上安裝速度慢導致工程造價高的缺點。研究和采用單管保溫結構,是保溫海底管道技術發展方向。

其中采用鎖接螺旋薄鋼板(厚1mm)作外套的單管保溫結構在2002年由PHILLIPS公司操作的蓬萊19-3油田I期海底管道工程中成功地被應用了。圖15-12給出了該保溫管道的斷面結構。

中國海油正在研究試制用高密度聚乙烯(PE)作外套的單管保溫結構管道。這項技術在國外早有應用,結合我國具體情況,特別是在渤海水深小于30m,甚至諸多灘海油田水深小于5米的情況下,采用這種保溫結構經濟可靠,所用材料和技術均可實現本地化和國產化,有很好的應用前景。

圖15-13示出正在研制的PE外套保溫管道斷面結構。

圖15-12PL19-3海底管道斷面結構

圖15-13PE外套保溫管斷面結構

表15-3給出所研制保溫管道的技術參數。

表15-3保溫管道技術參數表

當然,真正意義上的單管保溫結構管道,應該是取消外護套系統,在輸油鋼管外面施加既能防水也具良好保溫性能且有較強抗靜水壓力及抗機械破損能力的保溫材,無疑這是該項技術發展的最終方向。目前,在我國南海東部惠州26-1北油田(水深約120m)一條直徑為254mm、長約8.7km的海底保溫輸油管道,通過深入研究和招標推動,已經具備了工程實用基礎,其技術可行性和價格被接受性都得出了較好的結論。

油氣集輸設計規范的目錄

1 總則

2 術語

3 基本規定

4 原油集輸及儲運

4.1 基本要求

4.2 采油井場

4.3 原油泵輸

4.4 原油加熱及換熱

4.5 原油儲存

4.6 原油裝卸設施

5 原油凈化處理

5.1 油氣分離

5.2 原油除砂

5.3 原油脫水

5.4 原油穩定

5.5 油罐烴蒸氣回收

6 天然氣集輸

6.1 基本要求

6.2 氣液分離

6.3 水合物的防止

6.4 天然氣加熱

6.5 天然氣增壓

6.6 安全泄放

6.7 含硫氣田的防腐與防護

7 天然氣凈化及凝液儲存

7.1 天然氣凈化

7.2 天然氣凝液回收

7.3 天然氣凝液儲存

8 油氣集輸管道

8.1 基本要求

8.2 原油集輸管道

8.3 天然氣集輸管道

8.4 天然氣凝液輸送管道

8.5 管道敷設及防腐保溫

8.6 材料及管道組件

9 油氣計量

9.1 基本要求

9.2 油井產量計量

9.3 原油輸量計量

9.4 氣井產量計量

9.5 天然氣輸量計量

10 儀表及計算機控制系統

10.1 基本要求

10.2 儀表選型及主要控制內容

10.3 計算機控制系統

11 站場總圖及公用工程

11.1 站場址選擇

11.2 站場防洪及排澇

11.3 站場總平面及豎向布置

11.4 站場管道綜合布置

11.5 供配電

11.6 給排水及消防

11.7 供熱

……

12 健康、安全與環境

附錄A 氣體空間占有的空間面積分率K2和高度分率K3的關系表

附錄B 液滴在氣體中的阻力系數計算列線圖

附錄C 油氣混輸的壓降計算公式

附錄D 埋地瀝青絕緣集輸油管道總傳熱系數K選用表

附錄E 埋地硬質聚氨酯泡沫塑料保溫集輸油管道總傳熱系數K選用表

附錄F 集油管道伴熱輸送雙管客組(D2/D1≤3)熱力近似計算公式

附錄G 埋地瀝青絕緣采集氣管道總傳熱系數K選用表

附錄H 站內架空油氣管道與建筑物之間最小水平間距

附錄J 站內埋地管道與電纜、建筑物平行的最小間距

附錄K 站場內建筑物的通風方式及換氣次數

附錄L 通信電纜管道和直埋電纜與地下管道或建筑物的最小間距

附錄M 通信架空線路與其他設備或建筑物的最小音距

本規范用詞說明

附:條文說明

演繹法能效評價

演繹法能效評價與運行優化是密不可分的,演繹法能效評價是基于演繹法能耗預測的客觀、可量化的能效評價方式。采用演繹法能效評價方式對油氣管道進行能效評價,一般情況下需要先建立最優化數學模型并求解,然后借助工藝仿真計算,得到理想狀態下管道最低運行能耗數據;再以得出的耗能量數據和其他能效指標為基礎,綜合考慮可操作性、仿真誤差等因素,進行校正,得到可行的最低耗能量和最優能效指標,即管道運行經過優化后的能效數據,將報告期管道耗能量數據和相應能效指標以一定的方式與仿真計算校正結果相比較,再采用一定的方法進行評價。

需要注意的是,工藝仿真計算的方法以及以其為算法設計的仿真軟件本身并不具備計算出最優運行方案的功能,必須先將運行方案優化轉化為最優化求解問題,再配合工藝仿真才能得到優化后的運行方案。因此,最優化算法在油氣管道運行優化方面的應用是演繹法能耗評價的核心。

油氣管道運行優化是一項復雜的工作,下面簡要介紹一下優化技術在長距離輸油管道運行管理中的應用情況。長距離輸油管道輸量大,運距長,全年連續運行,燃料消耗和動力消耗很大。為了最大限度地降低輸油能耗,除了在設備方面采取措施外,還必須應用優化技術使管道處于最優運行狀態。早在20世紀60年代,Jefferson(1961)就對這一問題進行了探討。他假定輸量一定,根據各泵站所能提供的壓力的不同,應用動態規劃方法求解總壓力在各泵站的合理分配,這種方法所求解出的最優運行方案實際上是等溫輸油管道的最優運行方案。1980年,Gropal提出了一個對管道泵站的運行進行最優化的方法,目標是根據每臺泵的動力消耗決定開哪些泵機組,在保證流量的前提下使動力費用最小;用整數規劃方法確定每座泵站的最優泵組合,應用動態規劃方法確定每座泵站的最優升壓值。從20世紀80年代起,我國開始長距離熱油管道優化運行技術的研究工作,以能耗費用(動力費用+熱力費用)為目標函數,以各站的進站油溫和升壓值為決策變量,提出了一些簡化的和較完善的數學模型。

求解過程一般分為兩個階段:第一階段,先不考慮泵站條件約束,用非線性規劃方法(如0.618法或方向加速法)確定各站的最優進站油溫;在各站的最優進站油溫求解結果的基礎上,用整數規劃和動態規劃方法確定各站的最優泵組合及各站的最優升壓值組合,并根據節流量最小的原則調整各站的進站油溫;第二階段,根據第一階段求得的結果,編制出完成上級部門計劃(即給定的總輸油量)并使總能耗費用最小的給定時間內(一般為一個月)的輸油計劃,即決定采用哪幾種輸量運行及其運行的天數。

對于正在運行的熱油輸送管道,其經濟性可用能耗費用、輸油成本和利潤來衡量,三者是密切相關的。盡管對于不同的經濟指標有相應的經濟運行方案,但在一定時間內總輸油量一定的條件下,各種不同的經濟指標所對應的經濟運行方案是相同的。由于能耗費用計算簡單,一般以能耗費用作為評價輸油經濟性的指標。每個月的總輸油量是由上級部門決定的,因此,優化必須以完成輸油計劃并使能耗費用最少為目標,為了達到這個目標,求解可分為以下兩個階段完成:①求出每個可能輸量下的能耗費用最低的運行方案。該階段的任務即為在給定輸量Q、油品性質的條件下,求出能耗費用及其相應的運行參數。根據對影響能耗費用的諸因素的分析,可將各站進站溫度Tzi(i=1~n,為全線熱泵站個數)和表示第i站j號輸油泵是否運行的狀態變量IPij(i=1~n,j=1~np,np為每座泵站的輸油泵臺數;IPij=1表示該臺泵工作,IPij=0表示該臺泵不工作)作為決策變量。考慮各約束條件以能耗費用最低為目標進行優化。通過對目標函數進行一系列數學變換,把這樣一個包含n個連續變量(即各站進站溫度Tzi)及n×np個離散變量(即表示輸油泵是否運行的狀態變量IPij)的優化問題轉化為nps個(nps為工作的泵站數)包含若干個連續變量和np個離散變量的優化問題,然后對每個問題進行求解。②根據第一階段求得的結果,編制出完成上級部門計劃(即給定的總輸油量)并使總能耗費用最小的給定時間內(一般為一個月)的輸油計劃,即決定采用哪幾種輸量運行及其運行的天數。

(一)第一階段的數學模型

目前,國內正在運行的管道大部分已經采用密閉輸油,個別管道開式流程。因此,第一階段考慮開式流程和密閉流程兩種情況。

1.開式流程第一階段的數學模型

(1)決策變量的選取

對于一條正在運行的熱油管線,可將影響能耗費用的參數分為三類:①運行中可以人為控制的參數:輸量Q、各熱泵站的進站溫度Tzi或出站溫度TRi(i=1~n)、全線的泵組合方式(包括泵站數和站內的泵機組型號及輸量)。②隨第一類參數變化而變化的參數:如原油的比熱、密度、黏度、流變特性等物理性質隨溫度變化,出站溫度、泵組合的系統效率、加熱爐效率、泵組合提供的壓力等將隨輸量和進站溫度的變化而變化,它們與第一類變量之間的函數關系可用理論公式或經驗公式、實測或實驗曲線給出。③不以運行部門的意志為轉移的參數:如隨季節變化的地溫T0,隨含水量而變化的土壤物性,管線的強度及高程差,燃料油和電力價格等。

因此,對于選定的一組決策變量,若第一類參數確定了,那么其他參數也就確定了,故可以選取各站的進站油溫Tzi(i=1~n)和表示輸油泵是否運行的狀態變量IPij(i=1~n,j=1~np)作為決策變量。在輸量Q一定的條件下,Tzi、IPij一旦確定,則全線總壓降Hp、各站出站壓力、動力費用及燃料費用也就確定了。

(2)目標函數的選擇

該問題以降低能耗費用為目的,顯然應將能耗費用作為目標函數。目標函數表達式為:

油氣管道能效管理

式中:S為全線總能耗費用,元/t·km;Sp為全線總動力費用,元/t·km;SR為全線總熱能費用,元/t·km。

(3)約束條件的確定

1)熱力約束條件——溫降規律

油氣管道能效管理

式中:b=gi/Ca,a=KπD/GC;K為總傳熱系數,W/m2·℃;T0為該段管路的平均地溫,℃;G為質量流量,kg/s;C為所輸油品的比熱,J/kg·℃;i為該管段的平均水力坡降,m/m;D為輸油管道的直徑,m;g為重力加速度,m/s2。

2)水力約束——壓降計算

對于熱油管道,沿線各點溫度不同,因此各段的流型、流態可能不同,必須分段計算。

牛頓流段:油溫高于油品的反常點溫度時為牛頓流型。在牛頓流段內可分為牛頓層流段和牛頓紊流段,臨界雷諾數為:Re=2000。

Re≤2000,為牛頓層流,

Re>2000,為牛頓紊流,按水力光滑區計算:

非牛頓流段:油溫低于油品的反常點溫度時為非牛頓流型,在非牛頓流段內雷諾數的計算公式為:

油氣管道能效管理

式中:p 為所輸油品的密度;n´為流動行為指數,對于假塑性流體,其值等于流變行為指數n;

為對于假塑性流體,

;K 為油品的稠度系數。R eMR≤2000,為非牛頓層流,

;ReMR>2000,為非牛頓紊流,

a、b為與n´有關的系數。

3)泵特性方程約束

泵特性方程為:

油氣管道能效管理

i=1~n,j=1~np。

式中:hij為第i泵站第j號泵的揚程;qij為第i泵站第j號泵的流量;aij、bij為泵特性常數;m為與流態有關的常數,水力光滑區m=0.25。

泵的最大功率約束:Nij≤[Nijmax](i=1~n,j=1~m)。

4)進站溫度約束:Tzi≥[Tzmin](i=1~n)。

5)出站溫度約束:TRi≤[TRmax](i=1~n)。

6)進站壓力約束:Psi≥[Psmin](i=1~n)。

7)管道強度約束:Pdi≤[P](i=1~n)。

(4)約束條件的處理

1)在給定輸量Q下,某站進站溫度Tz一定時,上站出站油溫TR及該段壓降△P的計算。因溫度的高低直接影響到摩阻的大小,而摩阻的大小又與溫降直接相關,二者不能分別單獨計算,必須進行迭代計算。在計算摩阻時采用加權平均溫度來近似該段的溫度,即:TPJ=(T1+2T2)/3。

這樣既可以滿足精度要求,又大大簡化了計算。在一個加熱站間,按流態和流型最多可分為四段,油流從出站到下站依次出現的次序為:牛頓紊流段、牛頓層流段、非牛頓紊流段、非牛頓層流段。對于某一站間,給定輸量Q、進站油溫TZ,采用分段計算法便可以計算出上一站的出站油溫TR及該段壓降ΔP。

2)某一站最佳開泵方案的確定

對于給定的輸量Q,在確定了該泵站所應提供的揚程H后,便可以確定滿足輸量、揚程要求的使動力費最小的開泵方案。

a.并聯泵運行方式。

對于泵站i,各臺泵在揚程為H時所能提供的排量為:

油氣管道能效管理

各臺泵所消耗的功率為:

油氣管道能效管理

ηij為第i泵站第j號泵在排量為Qij時的效率。

則該問題的數學模型為:

油氣管道能效管理

由于Nij隨Qij的增加而單調增加,那么若取:

油氣管道能效管理

則對第i泵站求使能耗最小的數學模型可簡化為:

油氣管道能效管理

由于IPij(j=1~np)只可取1或0,可用0-1規劃方法求解。

以上過程考慮的是泵無調速裝置的情形。當有調速裝置時,應優先選用帶有調速裝置的泵。調節調速率,使該站的平均泵壓略大于匯管壓力,即基本做到無節流。

b.串聯泵運行方式。

對于泵站i,各臺泵在流量為Q時所能提供的揚程為:

油氣管道能效管理

各臺泵所消耗的功率為:

油氣管道能效管理

則該問題的數學模型為:

油氣管道能效管理

該模型亦可用0-1規劃方法求解。

(5)目標函數的變換

油氣管道能效管理

式中:Ey為燃料油價格,元/t;Ed為電力價格,元/kW·h;Bh為燃料油熱值,kJ/kg;p為所輸油品的密度,kg/m3;Q為管道輸量,m3/h;η。為電機效率;ηR1為首站加熱爐的平均效率;ηpi為第i站參加工作的加熱爐的平均效率;NPi為第i個參加工作泵站的泵所消耗的總功率,kW;L為管道全長,km;C(t)溫度為t時所輸油油品的熱容,kJ/kg·℃;TRi+1為第i+1站出站油溫,℃。

油氣管道能效管理

式中:TZ0為首站進站油溫,℃;TpO為油流在首站經過泵而引起的溫升,℃;Tzi為第i+1站進站油溫,℃;Tpi為油流在第i+1站經過泵而引起的溫升,℃;

油氣管道能效管理

式中:g為重力加速度,m/s2;Hi+1為從第i+1站到第i+2站間管路的壓力損失,m;C為所輸油品的平均熱容,kJ/kg·℃;ηPi+1為第i+1參加工作泵站的泵站泵的總效率。

原油的熱容—溫度關系可分為三個區:0≤t<T2、T2≤t≤T1和t>T1。根據對我國各種原油的統計,T2一般低于原油的凝固點,而我國熱油管道目前的運行溫度均高于原油的凝固點,因此,熱容曲線在區間[0,T2]內對所討論的問題無意義。在其他兩個區內,原油的熱容-溫度關系C(t)-t可表示為:

當T2≤t≤T1時,C=4.186-Aexp(mt);

當t>T1時,C=Co。

式中A、m、C0均為取決于油品性質的常數。

將C(t)-t關系代入熱力費用計算式,最終可以得到熱力費用關于各站進站溫度的函數關系。由此可見,熱力費用僅僅是各站進站溫度的函數,可表示為:

油氣管道能效管理

假定在輸量Q下,工作泵站序號為k1,k2,…,共有nps個泵站工作,則

油氣管道能效管理

若Tz(ki),TZ(ki+1),…,Tz(ki+1-1)確定,則兩個運行的相鄰泵站間(即ki泵站與ki+1泵站間)管路的壓降也就確定了,故ki泵站的動力費用Sp(ki)僅與Tz(ki),Tz(ki+1),…,Tz(ki+1-1)有關。

故Sp可用下式表示:

油氣管道能效管理

即Sp也是各站進站溫度的函數。

為了與Sp的表達式一致,可將SR表示為

油氣管道能效管理

則有:

油氣管道能效管理

油氣管道能效管理

式中,SR(ki)表示ki泵站與ki+1泵站間的熱力費用。

(6)可利用非線性規劃方法求解的數學模型

油氣管道能效管理

由于

彼此獨立,要使S最小,必須使

最小,故以上問題可變為:

油氣管道能效管理

這樣就將一個包含有n個連續變量、n×np個離散變量的最優化問題轉化為nps個包含若干個連續變量、np個離散變量的最優化問題,并可進而分解成非線性規劃問題和整數規劃問題,使原問題大大簡化。

分別求解上述nps個最優化問題,可得各個問題的最優目標函數值

、最優進展溫度和最優開機方案。將這些最優結果結合在一起即得到原問題的最優解

、TZi(i=1~n)和

2.密閉流程第一階段的數學模型

對于密閉流程,決策變量與目標函數與開式流程相同。在密閉流程條件下,全線是一個統一的水力系統。總的泵壓在全線統一分配,故該問題除應滿足開式流程應滿足的約束條件外,還應滿足進、出站壓力關系的約束條件。

即:

油氣管道能效管理

式中:Pdi為第i站的出站壓力,Pa;Psi為第i+1站的進站壓力,Pa;Hpi為第i站的增壓值,Pa;ΔPsi為第i站的站內摩阻,Pa;ΔPi為第i站與第i+1站之間的摩阻,Pa;ΔHi為第i站與第i+1站間的高程差,m;g為重力加速度,m/s2;p為原油的密度,kg/m3;PM為管線允許的最大工作壓力,Pa。

(二)第二階段的數學模型

設管道可在m種輸量下運行,運行輸量及對應的能耗費用分別為Qi(t/h)和Si(元/t)(i=1~m)。已知某月輸油任務為G萬t,該月的總天數為D天,根據生產工藝的要求,每月的總停輸時間不得超過d天。取每種輸量的運行時數xi為決策變量,S表示全月的總能耗費用,則該問題的數學模型為

油氣管道能效管理

下面介紹一下長輸管道最優運行問題的求解方法。

1.開式流程第一階段的求解

在前面已將球S的極小值問題轉化為求

的極小值的問題,因此下面只討論

的求解方法。

由數學模型得知,共有(ki+1-ki)個變量影響

,若將(ki+1-ki-1)個變量固定,只改變其中的一個變量Tzj(j=ki,ki+1,…,ki+1-1)則

的變化規律如圖5-4所示:

上圖的實際意義為:在Tzj由[Tzmin]升高到[Tzmax]過程中,熱力費用隨之單調增加;Tzj由[Tzmin]升高到T1過程中沒有引起開泵方案的變化,電力費用保持不變;當Tzj高于T1時,使摩阻繼續變小引起開泵方案的變化,動力費用和總能耗費產生突變。由上圖可以看出,總能耗費存在多個極小點,故若對總能耗費進行一次極小化,其結果只會是一局部極小點,不一定是全局極小點。

圖5-4 目標函數分析圖

2.下面介紹密閉流程第一階段的求解

對于密閉流程,由于全線是一個統一的水力系統,不但全線溫度是連續的,而且壓力也是連續的,各個變量都是相關的,因此難以找到一種對目標函數一次求解的方法,只能分步進行求解。

(1)求解各站進站溫度的初始值

在密閉流程條件下,壓力是連續的,同時運行溫度對摩阻又有影響,因此,通過調整各站的增壓值及進站溫度將全線節流量控制在最小是可能的,故實際的動力消耗Sp可用下式表示:

油氣管道能效管理

式中:P為全線總摩阻;Q為輸油量;C為常數。

假定各站的進站壓力Psi(i=1~n)相同,求解使總能耗費用S=SP+SR最小的進站溫度(即求解無壓力約束的各站的最優進站溫度),這是一個一維問題,可用黃金分割法(0.618法)求解。

(2)求解最佳開泵方案

確定了各站的進站溫度,則各個站間的摩阻就相應確定了,這樣就可以根據各站間的摩阻來求解各站的開泵方案,可采用動態規劃方法求解。

1)計算各工作泵站可能提供的增壓值。對于某一泵站,若有np臺泵,則有

種泵組合,則該站所提供的增壓值必須有

個可選值,這里的任務就是求出這

個可選值。

2)利用動態規劃方法確定各站的增壓值。可利用前面介紹的方法求解。

(3)求解最佳進站溫度

該問題實際上是在上述確定的各站最佳升壓值的前提下,重新確定各站的進站溫度,以使全線的節流量和總熱能費用最小。該問題的數學模型為:

決策變量:各站的進站溫度Tzi(i=1~n)。

目標函數:總的熱能費用SR。

約束條件:各站進站壓力約束Psi≥[Psmin]。(i=1~n)。

該模型可以用非線性規劃方法求解。為加快計算速度,仍可采用分解的方法。即將求全線熱力費用最小的問題分解為nps個求某一泵站間SR最小的問題。然后分別求解即可求得各站的最佳進站溫度Tzi(i=1~nps)。

第二階段的求解。在第一階段求解過程中,對于給定的輸量,可以求出其能耗費用最低值及相應的運行參數。第二階段的任務是在已知一組輸量及其在該輸量下的最低能耗費用的前提下,求出完成月輸油計劃且使總能耗費用最低的運行方案。該問題實際上是一個線性規劃問題,可用單純形式求解。

采用演繹法進行管道能效評價時,在利用最優化算法進行工藝仿真計算,得到理想狀態下最低能耗數據后,一般需要參考歸納法能耗預測數據對仿真結果進行校正,然后對仿真計算所采用的數學模型進行修正。再經過反復校正、修正,使用經過充分訓練的油氣管道工藝仿真系統進行計算,可以得到精度較高的工藝仿真能耗計算結果。在目前的技術條件下,訓練仿真系統使其達到演繹法管道能效評價精度,一般需要1到2年時間。

采用演繹法進行管道能效評價,在得到運行優化后的能效數據時,可參照歸納法能耗分析的相關方法開展其與報告期數據的對比分析。圖5-5為采用某演繹法能效分析軟件進行分析的對比圖。

圖5-5 演繹法能效評價分析圖

變換系統的管線發生泄漏,確認泄漏位置后應該怎么做

鍋爐在設計時考慮在制造、安裝、檢修和進行鍋爐水壓試驗時需排除容器內空氣,因此在汽包或飽和蒸汽引出管、各級過熱器、再熱器上聯箱或連通管均設計了空氣管

很多時候,鍋爐投入使用后會發生空氣管泄漏事故,泄漏部位大多為空氣管與管接頭對接焊縫和空氣支管與空氣總管角焊縫

分析泄漏原因為:空氣管路一般為安裝單位根據現場情況自行排放,各類監督檢查不重視,焊口無坡口、對口偏斜、管道開孔為氣割、焊縫夾渣、氣孔、未焊透等缺陷較多,運行中由于震動、熱應力等原因使內在缺陷發展成泄漏

鍋爐排污疏水管道屬于安裝單位根據現場情況自行敷設,大多數是沿鍋爐敷設

此類管道泄漏有以下幾種情況:因管道敷設焊口背面焊接條件差,焊接缺陷多,從而導致泄漏;管道與閥門對接焊口泄漏較多,原因多為管道未打坡口且對口不同心、偏折、強力對口等;聯箱管接頭與管道對接焊口或焊止線泄漏,主要因為管道固定在鋼架上,而聯箱隨爐膨脹,由于鍋爐起停頻繁,導致焊口疲勞;管道因內外腐蝕減薄而爆管,主要是內部不流動疏水和外部雨水的腐蝕造成

對于此類泄露可以對鍋爐排污疏水管道進行光譜、測厚檢查,對已減薄的管道進行更換,對全部安裝焊口重新規范焊接并進行無損檢驗

對膨脹不暢的管道進行重新調整

過熱器、再熱器減溫水管道也會發生泄漏,有如下幾種情況:減溫水流量孔板泄漏,由于鍋爐原配減溫水流量孔板為法蘭式,布置較緊湊,各支路管流量、溫度不均等;管道爆漏多是由于減溫水管一般并排敷設,管與管間隙小甚至無間隙,運行時因震動導致磨損而泄漏;因介質沖刷減薄管壁而泄漏,主要發生在彎頭部位;管道焊縫泄漏,主要因焊口未打坡口、焊接缺陷較多而導致泄漏

針對上述問題可采取以下措施:將法蘭式流量孔板更改為焊接式,并適當拉開距離便于檢修和操作;對減溫水管進行全線檢查、測厚,對管壁減薄的進行更換,未打坡口的焊口全部重新焊接;對管系進行合理的布置和固定避免碰磨,進行有防雨措施的保溫避免外部腐蝕

由于鍋爐主、再熱蒸汽系統、給水系統的溫度套管大多數為螺紋連接式,投運后隨著啟停次數的增加,管內介質流動引起振動,會造成因溫度套管螺紋處泄漏而在低谷時焊補或機組調停時更換溫度套管,給安全、經濟運行帶來一定的威脅

處理措施是利用機組大小修將螺紋連接式溫度套管更改為焊接式溫度套管

文章對國內外輸油管道泄漏檢測方法進行了分析,對油田輸油管道防盜監測的方法進行了探討

針對油田輸油管道防盜監測問題,指出了油田輸油管道防盜監測系統的關鍵技術是管道泄漏檢測報警及泄漏點的精確定位,并介紹了勝利油田輸油管道泄漏監測系統的應用情況

主題詞:輸油 管道 泄漏 監測 防盜泄漏是輸油管道運行的主要故障

特別是近年來,輸油管道被打孔盜油以及腐蝕穿孔造成泄漏事故屢有發生,嚴重干擾了正常生產,造成巨大的經濟損失,僅勝利油田每年經濟損失就高達上千萬元

因此,輸油管道泄漏監測系統的研究與應用成為油田亟待解決的問題

先進的管道泄漏自動監測技術,可以及時發現泄漏,迅速采取措施,從而大大減少盜油案件發生,減少漏油損失,具有明顯的經濟效益和社會效益

1 國內外輸油管道泄漏監測技術的現狀輸油管道泄漏自動監測技術在國外得到了廣泛的應用,美國等發達國家立法要求管道必須采取有效的泄漏監測系統

輸油管道檢漏方法主要有三類:生物方法、硬件方法和軟件方法

1

1 生物方法這是一種傳統的泄漏檢測方法,主要是用人或經過訓練的動物(狗)沿管線行走查看管道附件的異常情況、聞管道中釋放出的氣味、聽聲音等,這種方法直接準確,但實時性差,耗費大量的人力

1

2 硬件方法主要有直觀檢測器、聲學檢測器、氣體檢測器、壓力檢測器等,直觀檢測器是利用溫度傳感器測定泄漏處的溫度變化,如用沿管道鋪設的多傳感器電纜

聲學檢測器是當泄漏發生時流體流出管道會發出聲音,聲波按照管道內流體的物理性質決定的速度傳播,聲音檢測器檢測出這種波而發現泄漏

如美國休斯頓聲學系統公司(ASI)根據此原理研制的聲學檢漏系統(wavealert),由多組傳感器、譯碼器、無線發射器等組成,天線伸出地面和控制中心聯系,這種方法受檢測范圍的限制必須沿管道安裝很多聲音傳感器

氣體檢測器則需使用便攜式氣體采樣器沿管道行走,對泄漏的氣體進行檢測

1

3 軟件方法它采用由SCADA系統提供的流量、壓力、溫度等數據,通過流量或壓力變化、質量或體積平衡、動力模型和壓力點分析軟件的方法檢測泄漏

國外公司非常重視輸油管道的安全運行,管道泄漏監測技術比較成熟,并得到了廣泛的應用

殼牌公司經過長期的研究開發生產出了一種商標名稱為ATMOS Pine的新型管道泄漏檢測系統,ATMOS Pine是基于統計分析原理而設計出來的,利用優化序列分析法(序列概率比試驗法)測定管道進出口流量和壓力總體行為變化以檢測泄漏,同時兼有先進的圖形識別功能

該系統能夠檢測出1

6kg/s的泄漏而不發生誤報警

目前國內油田長距離輸油管道大都沒有安裝泄漏自動檢測系統,主要靠人工沿管線巡視,管線運行數據靠人工讀取,這種情況對管道的安全運行十分不利

我國長距離輸油管道泄漏監測技術的研究從九十年代開始已有相關報道,但只是近兩年才真正取得突破,在生產中發揮作用

清華大學自動化系、天津大學精密儀器學院、北京大學、石油大學等都在這一方面做過研究

如:中洛線(中原—洛陽)濮陽首站到滑縣段安裝了天津大學研制的管道運行狀態及泄漏監測系統(壓力波法),東北管道局1993年應用清華大學研制的檢漏系統(以負壓波法為主,結合壓力梯度法)進行了現場試驗

2 管道泄漏監測技術的研究通過對國內外各種管道泄漏檢測技術的分析對比,結合油田輸油管道防盜監測的特殊要求,勝利油田油氣集輸公司等單位組織開展了廣泛深入的調查研究

防盜監測系統的技術關鍵解決兩方面的問題:一是管道泄漏檢測的報警,二是泄漏點的精確定位

針對這兩項關鍵技術勝利油田采用的技術思路是:以壓力波(負壓波)檢測法為主,和流量檢測法相結合

2

1 系統硬件構成① 計算機系統:在管道的上下游兩端各安裝了一套工業控制計算機,用于數據采集及軟件處理

② 一次儀表: 壓力變送器溫度變送器流量傳感器③ 數據傳輸系統:兩套擴頻微波設備,用于實時數據傳輸

2

2 檢漏方法2

2

1負壓波法當長輸管道發生泄漏時,泄漏處由于管道內外的壓差,使泄漏處的壓力突降,泄漏處周圍的液體由于壓差的存在向泄漏處補充,在管道內產生負壓波動,這樣過程從泄漏點向上、下游傳播,并以指數律衰減,逐漸歸于平靜,這種壓降波動和正常壓力波動大不一樣,具有幾乎垂直的前緣

管道兩端的壓力傳感器接收管道的瞬變壓力信息,而判斷泄漏的發生,通過測量泄漏時產生的瞬時壓力波到達上游、下游兩端的時間差和管道內的壓力波的傳播速度計算出泄漏點的位置

為了克服噪聲干擾,可采用小波變換或相關分析、基于隨機變量之間差異程度的kullback信息測度檢測等方法對壓力信號進行處理

前蘇聯從20世紀70年代開始研究和使用自動檢漏技術,負壓波檢漏系統的普及,使輸油管線泄漏事故減少88%

負壓波的傳播規律跟管道內的聲音、水擊波相同,其速度取決于管壁的彈性和液體的壓縮性

國內曾經實測過大慶原油管道在平均油溫44℃、密度845kg/m3時的水擊波傳播速度為1029m/s

對于一般原油鋼質管道,負壓波的速度約為1000~1200m/s,頻率范圍0

2~20kHz

負壓波法對于突發性泄漏比較敏感,能夠在3min內檢測到,適合于監視犯罪分子在管道上打孔盜油,但是對于緩慢增大的腐蝕滲漏不敏感

負壓波法具有較快的響應速度和較高的定位精度

其定位公式為上下游分別設置壓力測點p1、p2,當管線在X處發生泄漏時,泄漏產生 的負壓波即以一定的速度α向兩邊傳播,在t和t+τ0時刻被傳感器p1、p2檢測到,對壓力信號進行相關處理,式中α為波速,L為p1、p2之間的距離未發生泄漏時,相關系數Φ(τ)維持在某一值附近;當泄漏發生時,Φ(τ)將發生變化,而且當τ=τ0時,Φ(τ)將達到最大值

理論上:解出定位公式如下:式中:X 泄漏點距首端測壓點的距離 mL 管道全長ma 壓力波在管道介質中的傳播速度 m/s上、下游壓力傳感器接收壓力波的時間差 s由以上公式可知要實現準確的定位,必須精確的計算壓力波在管道介質中的傳播速度a和上、下游壓力傳感器接收壓力波的時間差

① 壓力波在管道介質中傳播速度的確定壓力波在管道內傳播的速度決定于液體的彈性、液體的密度和管材的彈性:式中 α——管內壓力波的傳播速度,m/s;K——液體的體積彈性系數,Pa;ρ——液體的密度,kg/m ;E——管材的彈性,Pa;D——管道的直徑,m;e——管壁厚度,m;C ——與管道約束條件有關的修正系數;式中彈性系數K和密度ρ隨原油的溫度變化而變化,因此,必須考慮溫度對負壓波波速的影響,對負壓波波速進行溫度修正

在理論計算的基礎上,結合現場反復試驗,可以比較準確的確定負壓波的波速

② 壓力波時間差 的確定要確定壓力波時間差 ,必須捕捉到兩端壓力波下降的拐點,采用有效的信號處理方法是必須的,如:Kullback信息測度法、相關分析法和小波變換法

③ 模式識別技術的應用正常的泵、閥、倒罐作業等各種操作也會產生負壓波

為了排除這些負壓波干擾,在系統中采用了先進的模式識別技術,依據泄漏波與生產作業產生的負壓波波形等特征的差別,經過現場反復模擬試驗, 提高了系統報警準確率,減少了系統誤報警

2

2

2流量檢測管道在正常運行狀態下,管道輸入和輸出流量應該相等,泄漏發生時必然產生流量差,上游泵站的流量增大,下游泵站的流量減少

但是由于管道本身的彈性及流體性質變化等多種因素影響,首末兩端的流量變化有一個過渡過程,所以,這種方法精度不高,也不能確定泄漏點的位置

德國的阿爾卑斯管道公司(TAL)原油管道上安裝使用了該系統,將超聲波流量計,夾合在管道外進行測量,然后根據管道溫度、壓力變化,計算出管道內總量,一旦出現不平衡,就說明出現泄漏

日本在《石油管道事業法》中也規定使用這種檢漏系統,并且規定在30s中檢測到泄漏量在80L以上時報警

流量差法不夠靈敏,但是可靠性較高,它跟壓力波結合使用,可以大大減少誤報警

3 應用效果與推廣情況經過勝利油田組織的專家驗收和現場試驗,系統達到的主要技術指標:①最小泄漏量監測靈敏度:單位時間總輸量的0

7%;②報警點定位誤差:≦被測管長的2%;③報警反應時間:≦200秒

勝利油田輸油管道泄漏監測報警系統整體水平在國內居于領先地位,應用效果和推廣規模都是較好的,目前勝利油田油氣集輸公司輸油管道上已經推廣應用檢漏系統,取得了明顯的效益,多次抓獲盜油破壞分子,有力地打擊了盜油犯罪,為油田每年減少經濟損失1000多萬元,為管道的安全運行提供了保證

4結論4

1 采用負壓波與流量相結合的方法監測輸油管道的泄漏是有效的、可靠的;4

2 依靠油田局域網進行實時數據傳輸能夠提高泄漏監測系統的反應速度,能夠實現全自動的泄漏監測報警與定位;4

3 在油田輸油管道安裝管道泄漏監測系統能夠確保管道安全運行,明顯減少管道盜油事故的發生,具有明顯的社會效益和經濟效益

搜索关键词: